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ABSTRACT 

 

Algebra of bounded linear operators on a Hilbert space is strongly compact if its unit ball is relatively 

compact in the strong operator topology. The algebra generated by the operator and the identity is 

strongly compact. This notion was introduced by Lomonosov as an approach to the invariant subspace 

problem for essentially normal operators. The basic properties of strongly compact algebras are 

established. A characterization of strongly compact normal operators is provided in terms of their 

spectral representation, and some applications. Finally, necessary and sufficient conditions for a 

weighted shift to be strongly compact are obtained in terms of the sliding products of its weights, and 

further applications are derived. 
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1. INTRODUCTION 

Let 𝐵(𝐻) denote the algebra of all 

bounded linear operators on a Hilbert space 

𝐻. We say that a subalgebraℛof 𝐵(𝐻) is 

strongly compactif the unit ball of ℛ is 

relatively compact in the strong operator 

topology. Also, we say that an operator 𝑇in 

𝐵(𝐻)is strongly compactif the algebra 

generated by 𝑇and 𝐼is strongly Compact. 

This notion was introduced by Lomonosov 
[1] as an approach to the invariant subspace 

problem for essentially normal operators. 

Recall that an operator 𝑇in 𝐵(𝐻) is 

essentially normal if and only if the operator 

𝑇∗𝑇 − 𝑇𝑇∗is compact. Also, recall that the 

commutant of an operator is the algebra of 

alloperators that commute with the given 

operator. Lomonosov [1] proved that if 

𝑇 𝐵(𝐻) is an essentially normal operator 

such that neither the commutant of 𝑇nor the 

commutant of 𝑇∗are strongly compact 

algebras then 𝑇has a non-trivial invariant 

subspace.Therefore, it is an interesting task 

to study the structure of strongly compact 

algebras, because a better understanding of 

such algebras would give more insight on 

the invariant subspace problem for 

essentially normal operators. 

A classification of self-adjoint, 

strongly compact algebras was carried out 

by Marsalli, [2] who showed that a self-

adjoint sub algebra of 𝐵(𝐻) is strongly 

compact if and only if it can be written as a 

direct sum of finite-dimensional, self-

adjoint sub algebras of 𝐵(𝐻). Thus, every 

self-adjoint strongly compact operator is 

unitarily equivalent to a diagonal operator. 

We will see later that, in general, a strongly 

compact normal operator is not unitarily 

equivalent to a diagonal operator.  

Let 𝑇 be an operator on a Hilbert 

space 𝐻 and let 𝐸 ⊆ 𝐻 be an invariant 

subspace of𝑇. There are two operators 

associated to 𝑇and 𝐸, namely, the restriction 

operator 𝑇/𝐸𝐵(𝐸)defined by 𝑇/𝐸 𝑥 =

𝑇𝑥 for every𝑥  𝐸, and the quotient 

operator�̃� B(H/E) defined by �̃�(𝑥 +  𝐸) =
 𝑇𝑥 + 𝐸for every𝑥 +  𝐸  𝐻/𝐸. It is natural 
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to ask whether the restriction and the 

quotient of a strongly compact operator are 

strongly compact, too. We construct 

counterexamples to both questions. 

In this study organized as follows. 

First of all, in this section we present two 

different examples of strongly compact 

algebras and we give a procedure for 

constructing new strongly compact algebras 

out of old ones. Next, in this section we 

provide a characterization of strongly 

compact normal operators in terms of their 

spectral representation. Finally, in this 

section we obtain necessary and sufficient 

conditions for a weighted shift with non-

zero weights to be strongly compact in 

terms of the sliding products of its weights. 

As a warm-up, it will be convenient 

to state two characterizations of 

compactness, one for the norm topology of 

𝐻and the other one for the strong operator 

topology of 𝐵(𝐻) 
Lemma 1. A subset 𝑆 of 𝐻 is relatively 

compact if and only if for every 𝜀 > 0 there 

is a compact subsetKεof 𝐻such that𝑆 ⊆
K𝜀 + ε𝐵𝐻 . 

This characterization can be found in 

Diestel’s book. [3] The non-trivial part of its 

proof relies on the fact that any totally 

bounded subset of 𝐻 is relatively compact. 

Lemma 2. Let 𝑆 be a bounded subset 

of𝐵(𝐻). Then the following conditions are 

equivalent. 

(i) 𝑆 is relatively compact in the strong 

operator topology. 

(ii) 𝑇𝑥 ∶  𝑇 𝑆 is relatively compact for 

all 𝑥  𝐻. 
(iii) There is a dense subset D of H such that 

𝑇𝑥 ∶  𝑇 𝑆  is relatively compact for all 

xDThe equivalence of (i) and (ii) was 

noticed by Marsalli [2] and it does not need 

the assumption that 𝑆be bounded because of 

the Uniform Boundedness Principle. The 

implication (i)⇒(ii) follows from the 

continuity of the map 𝑇 ⟶  𝑇𝑥with respect 

to the strong operator topology. The 

implication (ii) ⇒(iii) is trivial. The 

implication (iii) ⇒ (i) is a consequence of 

Tychonov’s Theorem on the product of 

compact spaces in combination with Lemma 

1. 

Recall that a vector 𝑥0 𝐻is said to be 

cyclic for a subalgebra ℛ of 𝐵(𝐻) if the 

orbit 𝑅𝑥0 ∶  𝑅  ℛ is dense in 𝐻. A vector 

𝑥0 𝐻is said to be cyclic for an 

operator𝑇 𝐵(𝐻) whenever 𝑥0 is cyclic for 

the subalgebra generated by 𝑇and 𝐼 in 

𝐵(𝐻). 
A straightforward consequence of Lemma 2 

is that a subalgebra 𝑅 of 𝐵(𝐻) with a cyclic 

vector𝑥0 𝐻 is strongly compact if and only 

if the set𝑅𝑥0 ∶  𝑅  ℛ ,‖𝑅‖ ≤ 1is 

relatively compact. This fact will be used 

later in the proofs of Theorem 4 and 

Theorem 5.  

 

2. Basic properties of strongly compact 

algebras 

In this section we present two 

different examples of strongly compact 

algebras. These examples are the bricks for 

building strongly compact algebras. We also 

give a procedure for constructing new 

strongly compact algebras out of old ones.  

Proposition 1. Let 𝐻 be an infinite-

dimensional Hilbert space, and let(𝐸𝑖)𝑖∈𝐼be 

a family of finite-dimensional subspaces of 

𝐻 whose union is dense in 𝐻. If ℛ is a 

subalgebra of 𝐵(𝐻)with the property that 𝐸𝑖 
is invariant under 𝑅 for all 𝑅ℛ and  𝐼 , 
then ℛis strongly compact. 

Proof. Consider the dense subset 𝐷of 

𝐻given by  

𝐷 = 
Ii

iE


 

If 𝑥  𝐷then 𝑥 𝐸𝑖for some 𝑖  𝐼.Since𝐸𝑖is 

invariant under 𝑅for every 𝑅ℛwe have 

𝑅𝑥0 ∶  𝑅  ℛ ,‖𝑅‖ ≤ 1 ⊆ ‖𝑥‖. 𝐵𝐸𝑖 

It follows that the algebra 𝑅satisfies the 

condition (iii) in Lemma 2 and therefore it is 

strongly compact. 

An application of Proposition 1 is 

the following. Let 𝐻be a separable, infinite-

dimensional Hilbert space, let (ℯ𝑛 )𝑛≥0 be 

an orthonormal basis of 𝐻, and let 𝐵denote 

the backward shift on 𝐻, that is 𝐵ℯ0 = 0 and 

𝐵ℯ𝑛= ℯ𝑛−1 for 𝑛 ≥ 1. Put En= span ℯ0 , ℯ1, 

… , ℯ𝑛 . It is clear that the union of the En’s 
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is dense in 𝐻 and that every En is invariant 

under 𝐵. It follows that the backward shift is 

a strongly compact operator. 

Another situation to which Proposition 1 

applies is the case of a compact normal 

operator, since it is a well-known fact that 

every compact normal operator has an 

orthogonal basis of eigenvectors. In general, 

any operator on 𝐻with lower triangular 

matrix with respect to an orthogonal basis 

(ℯ𝑛 )𝑛≥0is strongly compact. 

Proposition 2. The commutant ℛ of a 

compact operator 𝐾 with dense range is 

strongly compact. 

Proof. Let 𝐷 =  𝐾𝐻 and let 𝑦  𝐷,say 𝑦 =
 𝐾𝑥. Then 
{𝑅𝑦 ∶  𝑅  ℛ, ‖𝑅‖ ≤ 1}  =  {𝑅𝐾𝑥 ∶  𝑅  ℛ , ‖𝑅‖ ≤ 1} 

= {𝐾𝑅𝑥 ∶  𝑅  ℛ , ‖𝑅‖ ≤ 1} ⊆ ‖𝑥‖. 𝐾𝐵𝐻  

and again it follows from Lemma 2 that ℛ is 

strongly compact.  

Although the above examples may overlap, 

they are essentially different, since the 

backward shift does not commute with a 

non-zero compact operator. The proof goes 

by contradiction. Suppose 𝐵𝐾 =  𝐾𝐵for 

some non-zero compact operator𝐾. 

Then𝐾∗is also a non-zero compact operator 

and we have𝐾∗ (𝐵∗)𝑛 =  (𝐵∗)𝑛𝐾∗for all 

𝑛 ≥0. Fix an𝑛0 ≥0 such that 𝐾∗𝑒𝑛0 ≠ 0. 

Then  

 (𝐵∗)𝑛ℯ𝑛𝑜 = ℯ𝑛+𝑛0 → 0weakly as 𝑛 → ∞ , 
So that‖𝐾∗(𝐵∗)𝑛ℯ𝑛𝑜‖ → 0 as 𝑛 → ∞ .But 

 (𝐵∗)𝑛 is an isometry for all 𝑛0 ≥0, so that  

‖(𝐵∗)𝑛𝐾∗ℯ𝑛𝑜‖  =  ‖𝐾
∗ℯ𝑛𝑜‖ > 0  

for all 𝑛 ≥0 , which is a contradiction. 

It is worth-while to observe that the 

assumption that 𝐾has dense range cannot be 

removed from Proposition 2. This will be 

shown in Proposition 8 below. 

The next result gives a procedure for 

constructing new strongly compact algebras 

out of old ones. 

Proposition 3. The direct sum of a family of 

strongly compact algebras is also strongly 

compact 

Proof. Let {𝐻𝑖: 𝑖 ∈ 𝐼} be a family of Hilbert 

spaces and consider the direct sum  

𝐻 ⨁
𝑖∈𝐼
𝐻𝑖 = {x = (𝑥𝑖): 𝑥𝑖 ∈ 𝐻𝑖 , ‖𝑥‖

2 =

∑ ‖𝑥𝑖‖
2 < ∞𝑖∈𝐼 }. 

Let ℛ𝑖be a strongly compact subalgebra of 

𝐵(𝐻𝑖 ) for every𝑖 ∈  𝐼and look at the direct 

sum 
ℛ = ⨁

𝑖∈𝐼
𝑅𝑖 = {𝑇 = (𝑇𝑖): 𝑇𝑖 ∈ ℛ𝑖 , ‖𝑇‖ = 𝑠𝑢𝑝𝑖∈𝐼‖𝑇𝑖‖ < ∞}. 

We have to show that ℛ is a strongly 

compact subalgebra of 𝐵(𝐻). We will check 

that its unit ball satisfies condition (ii) of 

Lemma 2. Fix a vector𝑥 = (𝑥𝑖) 𝐻, let 𝜀 >
0, and choose a finite set 𝐼0 ⊆ 𝐼such that  


 IIi

0
\

‖𝑥𝑖‖
2 < 𝜀2 

Consider the vector 𝒵𝐻defined by 𝒵𝑖= x𝑖 
if i I0 and 𝒵𝑖 =  0 otherwise. Since every 

ℛ𝑖is strongly compact and I0 is finite we 

have thatK𝜀 =  {𝑇𝑍 ∶ T ℛ, ‖𝑇‖ ≤ 1} 𝑖𝑠 a 

relatively compact subset ofH. Also, {𝑇𝑥 ∶
T ℛ, ‖𝑇‖ ≤ 1} ⊆ K𝜀 + 𝜀. 𝐵𝐻. It follows 

from lemma 1 that the set {𝑇𝑥 ∶
T ℛ, ‖𝑇‖ ≤ 1}𝑖𝑠 relatively compact in 𝐻 . 

Notice that the algebra generated by 

the direct sum of a family of operators and 

the identity is a subalgebra of the direct sum 

of the algebras generated by the operators 

and the identity. Hence, as a consequence of 

Proposition 3, the direct sum of a family of 

strongly compact operators is also a strongly 

compact operator. 

The converse of Proposition 3, is 

false. In section 3, we will construct an 

example of a family of operators 
{𝑇𝑖: 𝑖𝐼}such that 𝑇𝑖fails to be strongly 

compact for every𝑖  𝐼although the direct 

sum is a strongly compact operator. 

3. Strongly compact normal operators 

Recall that an operator 𝑁on a Hilbert space 

is said to be normal if 𝑁∗𝑁 = 𝑁𝑁∗. An 

example of a normal operator can be 

constructed as follows. Let Ω ⊆ ℂ be a 

compact set and let 𝜇be a finite measure 

defined on the Borel subsets of Ω .Then the 

operator 𝑀𝒵of multiplication by 𝒵defined 

on 𝐿2(𝜇) by 𝑀𝒵  𝑓 =  𝒵 𝑓 (𝒵)for every 

𝑓 𝐿2(𝜇)is normal. 

One version of the Spectral Theorem 

[6, p.15] can be stated as follows. If 𝑁is a 

normal operator defined on a separable 

Hilbert space, then there exist a finite or 

countable family (𝜇𝑛)𝑛≥1 of probability 

measures on a compact subset of ℂ , and a 
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unitary operator  𝑈:⊕𝑛≥1 𝐿
2(𝜇𝑛) → 𝐻 such 

that 𝑈∗𝑁𝑈 =  ⊕𝑛≥1 𝑇𝑛 ,where 𝑇𝑛 is the 

operator of multiplication by 𝒵on 𝐿2(𝜇𝑛). 
Hence, N is strongly compact if and only if 

so is ⊕𝑛≥1 𝑇𝑛 . 

We start with a characterization of 

those measures 𝜇for which the operator 

𝑀𝑧of multiplication by𝒵is strongly compact 

on 𝐿2(𝜇). Let 𝜋denote the space of all 

polynomials 𝑝(𝒵) in one complex variable 

provided with the norm ‖𝑝‖∞𝑖𝑛𝐿
∞(𝜇) . 

 

Theorem 1. The following conditions are 

equivalent: 

(i) 𝑀𝒵is strongly compact. 

(ii) The natural embedding 𝐽 ∶ 𝜋 → 𝐿2(𝜇)is 

compact. 

(iii) Any bounded sequence in 𝜋 has a𝜇-

almost everywhere convergent subsequence. 

Proof. Let 𝑝be any polynomial and notice 

that 𝑝(𝑀𝒵) = 𝑀𝑝(𝒵) where  𝑀𝑝(𝑧)denotes 

the operator ofmultiplication by𝑝. It is easy 

to check and it is shown in Halmos’s book 

[5] that the norm of the operator 𝑀𝑓of 

multiplication by 𝑓 is the norm of 𝑓 in 

𝐿∞(𝜇) and so ‖𝑝𝑀𝑧‖ = ‖𝑝‖∞. 

(i) ⟹ (ii) ∶ Assume 𝑀𝑧 is strongly compact 

on 𝐿2(𝜇). Then  
{p ϵ π ∶ ‖𝑝‖∞ ≤ 1}  = {𝑝(𝑀𝑧) .1: p ϵ π , ‖𝑝(𝑀𝑧)‖ ≤ 1 } 

is a relatively compact subset of 𝐿2(𝜇) and 

therefore 𝐽 is compact. 

(ii) ⟹(iii): Let(𝑝𝑛)𝑛 be a bounded sequence 

in 𝜋 Since 𝐽is compact, there is a 

subsequence (𝑝𝑛j)jthat converges in 𝐿2(𝜇)to 

𝑔, say. Hence, there is a subsequence 

(𝑝𝑛𝑗𝑘
)
𝑘
that converges 𝜇 -almost 

everywhere to 𝑔. 

(iii) ⟹(i): Let 𝑓 ∈  𝐿2(𝜇 )and let us show 

that 
{𝑝(𝑀𝑧)𝑓: p ϵ π , ‖𝑝(𝑀𝑧)‖ ≤ 1} = {𝑝 . 𝑓: 𝑝 ∈ 𝜋 , ‖𝑝‖∞ ≤ 1} 
is a relatively compact subset of 𝐿2(𝜇 ). Let 
(𝑝𝑛)𝑛be a sequence with ‖𝑝𝑛‖∞ ≤ 1 , for all 

𝑛and take a subsequence(𝑝𝑛𝑘)𝑘that 

converges 𝜇-almost everywhere to 𝑔, say. 

Then|𝑝𝑛𝑘 . 𝑓 | ≤ |𝑓|𝜇 -almost every where. 

It follows from the Bounded Convergence 

Theorem that‖𝑝𝑛𝑘 . 𝑓 − 𝑔. 𝑓‖2 → 0as 𝑘 →
∞. 

 As an application of Theorem 1we present 

two examples to show that the operator𝑀𝒵of 

multiplication by 𝒵may or may not be 

strongly compact. 

 

Corollary 1. (V. Shulman, private 

communication.) Let 𝔻denote the open unit 

disc provided with thetwo-dimensional 

Lebesgue measure. Then the operator 𝑀𝒵 of 

multiplication by 𝒵on 𝐿2(𝔻 ) is strongly 

compact. 

Proof. If (𝑝𝑛)𝑛is a sequence of polynomials 

with ‖𝑝‖∞ ≤  𝑀for all 𝑛then Montel’s 

Theorem gives asubsequence (𝑝𝑛𝑘)𝑘
that 

converges uniformly on compact subsets of 

𝔻and so almost everywhere. 

Since 𝑀𝒵has no eigenvectors, 

Corollary 1provides an example of a 

strongly compact normal operator that is not 

unitarily equivalent to a diagonal operator. 

Recall that the Bergman space is the 

subspace 𝐴2(𝔻) of all functions in 

𝐿2(𝔻 )which are analytic on𝔻. The above 

argument shows that multiplication by 𝒵is 

also a strongly compact operator on the 

Bergman space. We will come back to this 

fact in section 4. 

 

Corollary 2. Let [0,1] be the unit interval 

provided with the one-dimensional 

Lebesgue measure. Then the operator 𝑀𝑥of 

multiplication by 𝑥 on 𝐿2[0, 1] fails to be 

strongly compact. 

Proof. Let 𝐶[0, 1] denote the space of 

continuous functions on [0, 1] provided with 

the sup norm. The Stone-Weierstrass 

Theorem ensures that 𝜋is dense in 𝐶 [0,1]. 

Therefore it suffices to show that the natural 

embedding 𝐽 ∶  𝐶 [0, 1] → 𝐿2[0, 1] fails to be 

compact. Consider the sequence of 

functions defined by𝑓𝑛(𝑇) = cos 2𝜋𝑛𝑡. 
Then (𝑓𝑛)𝑛is bounded in 𝐶 [0, 1] and it has 

no convergent subsequence in 𝐿2[0, 1]. 

 

Proposition 4. Let 𝑇 be any operator on 𝐻 

such that ‖𝑇‖ <1 and let 𝑇𝐼be any norm-

one strongly compact operator on a Hilbert 

space 𝐻𝐼 , whose spectrum is equal to the 
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closure of 𝔻. Then the operator 𝑇 ⊕ 𝑇𝐼is 

strongly compact on 𝐻⊕𝐻𝐼. 
Proof. Let 𝑝be any polynomial and apply 

von Neumann’s inequality to get‖𝑝(𝑇)‖ ≤
‖𝑝‖∞ = ‖𝑝(𝑇𝐼)‖, so that 

‖𝑝(𝑇 ⊕ 𝑇𝐼)‖ = max{‖𝑝(𝑇)‖, ‖𝑝(𝑇𝐼)‖}

= ‖𝑝‖∞. 
A proof of von Neumann’s inequality can 

be found in Halmos’s book. [5] Since the set 
{𝑝(𝑇𝐼): ‖𝑝‖∞ ≤ 1}is relatively compact in 

the strong operator topology of 𝐵(𝐻𝐼 ) it 

suffices to prove that the set {𝑝(𝑇): ‖𝑝‖∞ ≤
1}is relatively compact in the strong 

operator topology of 𝐵(𝐻). We will show 

that condition (ii) of Lemma 2is satisfied. 

Fix a vector x ∈ 𝐻\{0}, , let 𝜀 > 0and 

choose an 𝑛0 such that  

∑ ‖T‖n
∞

n=n0+1

<
ε

‖x‖
 

let 𝐸 = span{𝑥, 𝑇𝑥,… , 𝑇𝑛𝑜𝑥 }, put M= ‖𝑥‖ 

+ ‖𝑇𝑥‖ +⋯+ ‖𝑇𝑛0𝑥‖, and consider the 

compact set 𝐾𝜀 = 𝑀.𝐵𝐸. take a polynomial 

p(𝑧) = 𝑎0 + 𝑎1𝑧 + ⋯+ 𝑎𝑁𝑧
𝑁 with ‖𝑝‖∞  ≤

1 and notice that |𝑎𝑛| ≤ 1 for every 0 ≤
𝑛 ≤ 𝑁. Thus, 𝑎0𝑥 + 𝑎1𝑇𝑥 +⋯+
 𝑎𝑛𝑜𝑇

𝑛0𝑥 ∈ 𝐾𝜀. On other hand 

(𝑎𝑛𝑜+1𝑇
𝑛𝑜+1 +⋯+ 𝑎𝑁𝑇

𝑁)𝑥 ∈ 𝜀. 𝐵𝐻. 

Hence , 𝑝(𝑇)𝑥 ∈ 𝐾𝜀+ 𝜀 . 𝐵𝐻. Now it follows 

from lemma 1that {𝑝(𝑇)𝑥 ∶  𝑝 ∈ 𝜋 , ‖𝑝‖∞ ≤
1 }is a relatively compact subset of 𝐻. 
Notice that the operator 𝑇 in Proposition 

4need not be strongly compact. Thus, the 

direct sum of two operators may be strongly 

compact when one of the summands is not. 

Later on we will provide a stronger version 

of this result, namely, none of the 

summands will be strongly compact. For the 

time being we have an example of a 

strongly compact operator with a restriction 

and a quotient that fail to be strongly 

compact. 

Recall that two measures are 

equivalent if they have the same null sets, 

and they are orthogonal if they are 

concentrated on disjoint sets. In the sequel 

we will use the following result. 

Lemma 3. Let 𝜇1and 𝜇2be two finite 

measures on a compact setΩ ⊆ ℂ , and let 𝑇𝑖 

denote the operatorof multiplication by 𝑧 on 

𝐿2(𝜇𝑖)for 𝑖= 1, 2. 

(𝑖) If 𝜇1 and 𝜇2are equivalent then 𝑇1 and 

𝑇2are unitarily equivalent. 

(ii) If 𝜇1and 𝜇2are orthogonal then the 

operator of multiplication by 𝑧 on 𝐿2(𝜇1 +
𝜇2)is unitarily equivalent to 𝑇1⊕𝑇2. 

Proof. (𝑖) Let ℎdenote the Radon-Nikodym 

derivative of 𝜇1 with respect to 𝜇2 and 

define 

𝑈: 𝐿2(𝜇1) → 𝐿2(𝜇2) 

𝑓 ↦  𝑓√ℎ. 
It is easy to check that 𝑈 is a unitary 

operator and 𝑇1 = 𝑈
∗𝑇2𝑈. 

(ii) Let 𝐵1 and 𝐵2 be two disjoint Borel 

subsets of Ω such that for 𝑖= 1, 2 the 

measure 𝜇𝑖is concentrated on 𝐵𝑖, that is , 

𝜇𝑖(Ω\𝐵𝑖) = 0 . Define 

U :𝐿2(𝜇1) ⊕ 𝐿2(𝜇2)   → 𝐿2(𝜇1 + 𝜇2) 
(𝑓1, 𝑓2) ↦  𝑓1X𝐵1 + 𝑓2X𝐵2 . 

It is easy to check that 𝑈is a unitary operator 

and that 𝑈(𝑇1⊕𝑇2)𝑈∗is the operator of 

multiplication by 𝒵on𝐿2(𝜇1 + 𝜇2). 
Part (ii) of Lemma 3can be easily 

generalized to a countable family of 

measures as follows. 

 

Lemma 4. Let ((𝜇𝑛)𝑛) be a sequence of 

pairwise orthogonal probability measures 

on a compact set Ω ⊆ ℂ,let 𝑇𝑛 denote the 

operator of multiplication by 𝒵 on 𝐿2(𝜇𝑛) , 

and put 𝜇 = ∑ 𝜇𝑛/2
𝑛 .∞

𝑛=1 Then the 

operatorof multiplication by 𝒵 on  𝐿2(𝜇 )is 

unitarily equivalent to the operator ⨁𝑛=1
∞ 𝑇𝑛 

Proof. For every 𝑛 , let ℎ𝑛denote the Radon-

Nikodym derivative of 𝜇𝑛with respect to 𝜇. 

Observe that thesets {𝒵 ∈  Ω ∶  ℎ𝑛(𝒵) ≠
0}are pairwise 𝜇 − almost disjoint and 

therefore we can define 
𝑈: ⨁𝑛=1

∞  𝐿2(𝜇𝑛) ⟶  𝐿2(𝜇 ) 

(𝑓𝑛)𝑛 ⟼∑𝑓𝑛√ ℎ𝑛

∞

𝑛=1

 . 

It is easy to check that 𝑈is a unitary operator 

and that U( ⨁𝑛=1
∞ 𝑇𝑛)𝑈∗is the operator of 

multiplication by 𝑧on  𝐿2(𝜇 ). 
The next result shows that the 

summands of a strongly compact direct sum 

need not be strongly compact. Moreover, all 
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the operators involved in the construction 

are normal. 

Proposition 5. Let (𝑡𝑛)𝑛≥1,be a sequence of 

distinct points dense in 0,2𝜋), let 𝜇𝑛 denote 

the one-dimensional Lebesgue measure on 

the radial segment 𝐼𝑛 = (0, ℯ
𝑖𝑡𝑛 and let 

𝑇𝑛denote the operator of multiplication 

by𝒵on  𝐿2(𝜇𝑛). Then 𝑇𝑛 fails to be strongly 

compact for every 𝑛 ≥1 and the operator 

 ⨁𝑛=1
∞ 𝑇𝑛is strongly compact. 

Proof. For every, it is easily seen that 𝑇𝑛 is 

unitarily equivalent to the 

operatorℯ𝑖𝑡𝑛𝑀𝑥where𝑀𝑥isthe operator of 

multiplication by 𝑥on  𝐿2(0,1 )Then 𝑇𝑛fails 

to be strongly compact thanks to Corollary2. 

Notice that the radial segments 𝐼𝑛. are 

pairwise disjoint and therefore the measures 

𝜇𝑛are pairwise orthogonal. Consider the 

measure 𝜇 = ∑ 𝜇𝑛/2
𝑛 .∞

𝑛=1 let 𝑇denote the 

operator of multiplication by𝒵on  𝐿2(𝜇 ) 

and observe that, thanks to Lemma4, 𝑇and 

 ⨁𝑛=1
∞ 𝑇𝑛 are unitarily equivalent. Finally, let 

us showthat 𝑇is strongly compact. Since the 

union of the radial segments𝐼𝑛 is a dense 

subset of 𝔻 it follows that any bounded 

sequence of polynomials in  𝐿∞(𝜇 ) is 

uniformly bounded on 𝔻, and by Montel’s 

Theorem ithas a subsequence that converges 

uniformly on compact subsets of𝔻, so that 

condition (iii) of Theorem 1, is satisfied.  

Now we provide an example of a strongly 

compact direct sum of two non strongly 

compact normal operators. 

 

Proposition 6. There exist two 

𝑛𝑜𝑛 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 compact normal operators 

such that their direct sum is strongly 

compact. 

Proof. Let𝐷1 = {𝑧 ∈ ℂ ∶ |𝒵 − 1/2| < 1} and 

𝐷2  = {𝑧 ∈ ℂ ∶ |𝑧 + 1/2| < 1}, let 𝜎1denote 

the two-dimensional Lebesgue measure on 

𝐷1, and let 𝜎2denote the two-dimensional 

Lebesgue measure on𝐷2\𝐷1. We will 

consider the arc-length measure on the 

boundary D𝑗 of 𝐷𝑗, more precisely 𝜏1 , will 

bethe normalized arc-length measure on the 

arc (D1) ∩ 𝐷2and 𝜏2will be the normalized 

arc-length measure on the arc(D2) ∩ 𝐷1. 
Finally, let 𝜇𝑗 = 𝜎𝑗 + 𝜏𝑗and denote by 𝑇𝑗the 

operator of multiplication by𝒵on  𝐿2(𝜇𝑗). for 

𝑗 = 1 , 2. 

The four measures 𝜎1 , 𝜎2,  𝜏1  and 𝜏2 are 

pairwise orthogonal, so that 𝜇
1
 and 𝜇

2
 are 

orthogonal, andtherefore 𝑇1⊕𝑇2 is unitarily 

equivalent to the operator of multiplication 

by𝒵on 𝐿2(𝜇1 + 𝜇2). A sequence 

ofpolynomials which is bounded on 

𝐿∞(𝜇1 + 𝜇2) is uniformly bounded on𝐷1 ∪
𝐷2, and by Montel’s Theoremit has a 

subsequence that converges pointwise on 

𝐷1 ∪ 𝐷2 and therefore(𝜇1 + 𝜇2)-almost 

everywhere. It 

follows from Theorem 1, that𝑇1⊕𝑇2 is 

strongly compact. 

In order to prove that 𝑇1 is not strongly 

compact, observe that (D1) ∩ 𝐷2 is an arc 

whose length isexactly one third of the 

length of the circle {𝒵 ∈ ℂ ∶ |𝒵 − 1/2| < 1}, 
and it is easy to check for 𝑝𝑛(𝒵) =
(𝒵 − 1/)3𝑛that the sequence of polynomials 
(𝑝𝑛)𝑛 is an orthonormal system in 𝐿2( 𝜏1 ). 
This sequence is bounded in 𝐿∞(𝜇1), but it is 

not relatively compact in 𝐿2(𝜇1)because it is 

not so in 𝐿2( 𝜏1 ). This shows that 𝑇2 is not 

strongly compact. A similar argument with 

the sequence of polynomials𝑝𝑛(𝒵) =
(𝒵 + 1/)3𝑛shows that 𝑇2 is not strongly 

compact. 

Now we turn to the general case of a normal 

operator 𝑁on a separable Hilbert space 

𝐻.We start with the following result. 

 

Lemma 5. Let Ω ⊆ ℂ be a compact set and 

let (𝜇𝑛)𝑛≥1be a sequence of probability 

measures defined on the Borel subsets of Ω, 

let 𝑇𝑛denote the operator of multiplication 

by 𝑧 on 𝐿2(𝜇𝑛),and assume that every𝜇𝑛 is 

absolutely continuous with respect to 𝜇1. 

Then 𝑇 = ⨁𝑛=1
∞ 𝑇𝑛is strongly compact if and 

only if 𝑇1is strongly compact. 

Proof . Notice that for any polynomial 𝑝we 

have 
‖𝑝(𝑇)‖ = sup

𝑛
‖𝑝(𝑇𝑛)‖ = sup

𝑛
‖𝑝‖𝐿∞(𝜇1)

= ‖𝑝‖𝐿∞(𝜇1) = ‖𝑝(𝑇1)‖. 

Assume 𝑇is strongly compact and notice 

that for every 𝑓1  ∈ 𝐿
2(𝜇1)the set {𝑝(𝑇1)𝑓1 ∶

‖𝑝(𝑇1)‖ ≤ 1}is the projection onto the first 

coordinate of the set 
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{ 𝑝(𝑇)(𝑓1 , 0 ,0 , … ): ‖𝑝(𝑇1)‖ ≤ 1}, which is 

relativelycompact, and therefore 𝑇1 is 

strongly compact.  

Conversely, assume 𝑇1 is strongly compact 

and take a sequence of polynomials 

(𝑝𝑗)𝑗
such that ‖𝑝𝑗(𝑇)‖ ≤ 1for every 𝑗 ≥ 1. 

Since ‖𝑝𝑗(𝑇)‖ = ‖𝑝𝑗(𝑇1)‖ and 𝑇1 is strongly 

compact, there is a subsequence (𝑝𝑗𝑘)𝑘that 

converges 𝜇1-almost everywhere. Since 𝜇𝑛is 

absolutely continuous with respect to 𝜇
1
, it 

follows that(𝑝𝑗𝑘)𝑘converges 𝜇𝑛-almost 

everywhere. Hence, for every𝑓𝑛 ∈ 𝐿
2(𝜇𝑛), 

the set {𝑝(𝑇𝑛)𝑓𝑛 ∶ ‖𝑝(𝑇)‖ ≤ 1}is relatively 

compact. Now fix 𝑓  ∈    𝐻= ⨁𝑛=1
∞ 𝐿2(𝜇𝑛), 

let𝜀 >0, and choose 𝑛0 so large that  




+= 10nn

‖𝑓𝑛‖
2 < 𝜀2 

Consider the compact set 𝐾𝜀 = 

{(𝑝(𝑇1)𝑓1, … , 𝑝(𝑇𝑛)𝑓𝑛 ,0 , 0, . . ): ‖𝑝(𝑇)‖ ≤ 1} 
we have  

{𝑝(𝑇)𝑓 ∶ ‖𝑝(𝑇)‖ ≤ 1}  ⊆  𝐾𝜀 + 𝜀𝐵𝐻 

so it follows from Lemma 1 and Lemma 1 

that 𝑇is strongly compact. 

 Now we characterize strong compactness 

for a normal operator on a separable Hilbert 

space, that is, for a direct sum of operators 

of multiplication by 𝒵. We will consider 

only countable direct sums, but a similar 

result holds for finite sums. 

Theorem 2. Let Ω ⊆ ℂ be a compact set, let 
(𝜇𝑛)𝑛be a sequence of probability measures 

defined on the Borel subsets of Ω, let 𝑇𝑛 be 

the operator of multiplication by𝒵on 𝐿2(𝜇𝑛), 
and let 𝜇 = ∑ 𝜇𝑛/2

𝑛.∞
𝑛=1 Then  ⨁𝑛=1

∞ 𝑇𝑛is 

strongly compact if and only if the operator 

𝑇 of multiplication by 𝒵on 𝐿2(𝜇𝑛)is strongly 

compact. 

Proof. It is clear that 𝜇𝑛is absolutely 

continuous with respect to 𝜇. Let𝑓𝑛denote 

the Radon-Nikodymderivative of 𝜇𝑛with 

respect to 𝜇and let𝐴𝑛 = {𝒵 ∈ Ω ∶ 𝑓𝑛(𝒵) > 0}. 

Then 𝜇(Ω\⋃∞𝑛=1 𝐴𝑛) = 0. Now choose 

𝐵𝑛 ⊆ 𝐴𝑛such that ∪𝑛=1
∞ 𝐴𝑛 = ∪𝑛=1

∞ 𝐵𝑛 and 
(𝐵𝑛)𝑛 are pairwise disjoint. Let 𝑣𝑛 =
𝜇𝑛|𝐵𝑛and 𝜎𝑛 = 𝜇𝑛|Ω\𝐵𝑛 , so that 𝜇𝑛= 𝑣𝑛 +
𝜎𝑛. let𝑆𝑛 𝑎𝑛𝑑 𝑅𝑛denote the operators of 

multiplication by 𝒵on 𝐿2(𝑣𝑛) and 

𝐿2(𝜎𝑛),respectively. Also, let 𝑣 =
∑ 𝑣𝑛/2

𝑛∞
𝑛=1 . We have  

)(
11

RST nn
n

n
n

=


=



=

. 

Since the measures 𝑣𝑛are pairwise 

orthogonal, Lemma 4 gives that 

𝑛=1
∞ 𝐿2(𝑣𝑛)is isometrically isomorphic to 

𝐿2(𝑣), and the operator 𝑛=1
∞ 𝑆𝑛corresponds 

with the operator 𝑆of multiplication by 𝑧 on 

𝐿2(𝑣).Thus, 𝑛=1
∞ 𝑇𝑛corresponds with 

𝑆(𝑛=1
∞ 𝑅𝑛). Now every 𝜎𝑛is absolutely 

continuous with respect to 𝑣 and it follows 

from Theorem 5 that 𝑆(𝑛=1
∞ 𝑅𝑛)is strongly 

compact if and only if 𝑆is strongly compact. 

Finally, 𝜇 and 𝑣are equivalent measures, 

and by Lemma 3, 𝑇is strongly compact if 

and only if so is 𝑆, and Theorem 2, follows.  

Recall that a spectral measure on a Hilbert 

space 𝐻is any measure defined on the Borel 

subsets of a compact set Ω ⊆ ℂ with values 

on the orthogonal projections of 𝐻which is 

countably additive in the strong operator 

topology and such that 𝐸(Ω) = 𝐼. A common 

version of the Spectral Theorem [5] ensures 

that if 𝑁is a normal operator on a Hilbert 

space 𝐻then there exists a unique spectral 

measure 𝐸on 𝐻defined on the Borel subsets 

of 𝜎 (𝑁) such that 

𝑁 = ∫ 𝜆𝑑𝐸𝜆 .
𝜎 (𝑁)

 

The following result ensures that for every 

spectral measure on a separable Hilbert 

space one can find a probability measure 

whose null sets are those of the given 

spectral measure. 

 

Lemma 6. Let 𝑁 be a normal operator on a 

separable Hilbert space 𝐻 and let 𝐸 be the 

spectral measure associated to 𝑁. Then 

there exists a probability measure 𝑣 such 

that 𝐸(𝐵) = 0if and only if 𝑣(𝐵) = 0. 
Proof. Let (𝑥𝑛)𝑛 be a dense sequence in 

𝐵𝐻and define a sequence of finite positive 

measures (𝑉𝑛)𝑛on the Borel subsets of 𝜎 

(𝑁) by 𝑣𝑛(𝐵)= (𝐸(𝐵)𝑥𝑛, 𝑥𝑛). Then put =
∑ 𝑣𝑛/2

𝑛∞
𝑛=1 . It is clear that if 𝐸(𝐵) = 0 then 

𝑉𝑛(𝐵) = 0 for every 𝑛. Conversely, 

if 𝑣𝑛(𝐵) = 0 for every 𝑛 then(𝐸(𝐵)𝑥𝑛, 𝑥𝑛) =
 0forevery 𝑥 ∈  𝐻and since 𝐸(𝐵) is an 
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orthogonal projection it follows that 𝐸(𝐵) = 

0.  

We finish this section with a 

characterization of strong compactness for 

normal operators on a separable Hilbert 

space in terms of their spectral measures.  

Theorem. Let 𝐸 be the spectral measure 

associated to a normal operator 𝑁 on a 

separable Hilbertspace and let 𝑣 be a 

probability measure defined on the Borel 

subsets of 𝜎(𝑁)such that 𝐸(𝐵) =  0 if 

andonly if 𝜎(𝑁) =  0 . Then 𝑁 is strongly 

compact on 𝐻 if and only if the operator of 

multiplication by 𝒵isstrongly compact on 

𝐿2(𝑣). 

Proof. We know 𝑁is unitarily equivalent to 

a direct sum of multiplications by 𝑧. We will 

consider onlythe case of an infinite sum, the 

case of a finite sum being similar. Thus, 

there exists a sequence (𝜇𝑛)𝑛ofprobability 

measures on 𝜎(𝑁) such that N is unitarily 

equivalent to𝑛=1
∞ 𝑇𝑛, where 𝑇𝑛is the 

operator of multiplication by 𝒵on 𝐿2(𝜇𝑛). 

Let 𝜇 = ∑ 𝜇𝑛/2
𝑛 .∞

𝑛=1  From Theorem 2we 

know that N is strongly compact if and only 

if so is the operator of multiplication by 𝒵on 

𝐿2(𝜇). If we prove that 𝜇 and 𝑣 are 

equivalent, we will be done thanks to 

Lemma 3. The spectral measure of 𝑁 is 

equivalent to𝐸1 the spectral measure of 

𝑛=1
∞ 𝑇𝑛. It is easy to check that for every 

Borel set 𝐵 ⊆ 𝜎(𝑁), (𝐵)is the projection 

defined by 

𝐸1(𝐵):𝑛=1
∞ 𝐿2(𝜇𝑛) → 𝑛=1

∞ 𝐿2(𝜇𝑛). 
(𝑓𝑛)𝑛 ⟼ (𝑓𝑛𝜒Β)𝑛 

and therefore 

𝜇 (B) = 0⇔ 𝜇𝑛 (𝐵)=  0 for all 𝑛 ⇔ 𝐸1(𝐵) = 0 

⇔ 𝐸(𝐵)  =  0 ⇔ 𝑣(𝐵)  =  0, 

so that  𝜇and 𝑣are equivalent measures.  

In case the Hilbert space 𝐻is not separable, 

it is not true that for any normal 

operator𝑁there is always a probability 𝑣 

equivalent to the spectral measure 

𝐸associated to 𝑁. In fact, it can be proven 

that such a probability exists if and only if 

the set {𝐸𝑥,𝑥: 𝑥 ∈ 𝐻}is separable in the space 

𝑀(𝜎(𝑁))of Radon measures on 𝜎(𝑁),where 

𝐸𝑥,𝑥is the measure defined by 𝐸𝑥,𝑥(𝐵)  = 

(𝐸(𝐵)𝑥,𝑥). However, if such aprobability 

exists then Theorem 3, still holds, the 

arguments being similar. For instance, 

Lemma 5, is easily seen to be true for an 

uncountable family of measures.  

 

4. Strongly compact weighted shifts 

Let 𝐻 be an infinite-dimensional, separable 

Hilbert space, let (ℯ𝑛)𝑛≥0¸ be an 

orthonormal basis for 𝐻, and consider the 

weighted shift 𝑊induced on 𝐻by a bounded 

sequence (𝒲𝑛)𝑛 of non-zero weights, that 

is, 𝑊ℯ𝑛= 𝑤𝑛ℯ𝑛+1for every 𝑛 ≥ 0. 

The aim of this section is to discuss the 

conditions under which a weighted shift is 

strongly compact. We start off with a 

necessary condition. We will show at the 

end of this section that this condition is not 

sufficient. 

Proposition. Let 𝑊 be the weighted shift 

induced by a bounded sequence (𝒲𝑛)𝑛≥0of 

non-zero weights. If 𝑊 is strongly compact 

then  

lim
𝑛→∞

|
∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

|
𝑘≥0

inf

=  0. 

Proof. It is not hard to prove and it is shown 

in Halmos’s book [4] that the norm of 

 𝑊𝑛 , 𝑛 ≥ 1, is thesupremum of the sliding 

products of length 𝑛, or, explicitly 

‖ 𝑊𝑛‖  = |∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0 |

𝑘≥0

𝑠𝑢𝑝
.  

The sequence of operators ( 𝑊𝑛/
‖ 𝑊𝑛‖)𝑛≥0 lies inside the unit ball of the 

algebra generated by 𝑊and 𝐼. Hence, the 

sequence of vectors ( 𝑊𝑛ℯ0/‖ 𝑊
𝑛‖)𝑛≥0  is 

relatively compact. On the other hand  
 𝑊𝑛ℯ0

‖ 𝑊𝑛‖
   =   (

∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

) ℯ𝑛  → 0weakly as 𝑛 →

 ∞ 

It follows that ‖ 𝑊𝑛ℯ0‖/‖ 𝑊
𝑛‖ → 0 as →  ∞ 

, that is  

lim
𝑛→∞

|
∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

|
𝑘≥0

𝑖nf

 = 0.  

The necessary condition stated in 

Proposition 7, can be used for constructing a 

counterexample to show that the condition 

of having dense range cannot be removed 

from Proposition 2. 

 

Proposition 8. There exists a compact 

operator with the property that none of the 
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restrictions to its nonzero invariant 

subspaces is strongly compact. 

Proof. Let 𝑊be a weighted shift with 

decreasing sequence (𝒲𝑛)𝑛≥0 of positive 

weights such that 𝒲𝑛 → 0as →  ∞ . Then 

𝑊is compact and 

|
∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

|
𝑘≥0

𝑖nf

= 1 , 

so that 𝑊is not strongly compact. A 

Theorem of Nikolskii’s [6] ensures that if  




=0n

𝑤𝑛
2 < ∞ 

then the non-trivial invariant subspaces of 

𝑊are all of the form 𝐸 = 

span{ℯ𝑛0 , ℯ𝑛0+1, … }for some 𝑛0  ≥ 0. But 

then again 𝑊|𝐸is a weighted shift with 

decreasing sequence (𝒲𝑛)𝑛≥𝑛0of positive 

weights, so that 𝑊|𝐸is not strongly compact. 

A proof of Nikolskii’s Theorem can be 

found in Halmos’s book. [4] 

The following result gives another example 

of a restriction of a strongly compact 

operator to an invariant subspace that is not 

strongly compact. 

 

Proposition 9. There exists a strongly 

compact bilateral weighted shift with an 

invariant subspace such that the restriction 

of the operator to the invariant subspace 

fails to be strongly compact. 

Proof. Let(𝒲𝑛)𝑛≥0 be a decreasing 

sequence of positive weights such that 

𝒲𝑛 →0 as 𝑛 → ∞, and put𝑤−𝑛 = 𝑤𝑛. Now 

let 𝑊 be the bilateral weighted shift with 

sequence of weights (𝑤𝑛)𝑛∈ℤ. Then 𝑊is a 

compact operator with dense range, so by 

Proposition 2, we know that 𝑊is strongly 

compact. Let𝐸 =span {ℯ0 , ℯ1, … }. Then E is 

invariant under 𝑊and it follows from 

Proposition 8, that 𝑊|𝐸fails to be strongly 

compact, as we wanted. 

Now we turn to the search of sufficient 

conditions for a weighted shift to be 

strongly compact.  

Theorem 4. Let 𝑊 be the weighted shift 

induced by a bounded sequence (𝒲𝑛)𝑛≥0of 

non-zero weights and assume that 

∑ |
∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

|

𝑘≥0

𝑖nf∞

𝑛=0

< ∞ 

Then W is strongly compact. 

Proof. It follows from the computation in 

the proof of Proposition 7, that 

‖ 𝑊𝑛ℯ0‖

‖ 𝑊𝑛‖
   =   |

∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑗+𝑘
𝑛−1
𝑗=0

|
𝑘≥0

𝑖nf

 ,  

so that the assumption is  

∑
‖ 𝑊𝑛ℯ0‖

2

‖ 𝑊𝑛‖2
∞
𝑛=1 <  ∞ .  

Since 𝑒0 is a cyclic vector for, thanks to the 

remarks after Lemma 2, it suffices to show 

that 

S =  p(𝑊)ℯ0: p is a polynomial, ‖𝑝(𝑊)‖ ≤

1 
is a relatively compact subset of H . Fix 

 𝜀>0 and choose 𝑛0 so large that  

∑
‖ 𝑊𝑛ℯ0‖

2

‖ 𝑊𝑛‖2
∞
𝑛=𝑛0 < 𝜀2.  

Let 𝐾𝜀denote the unit ball of span 

{𝑒0 , 𝑒1, … , ℯ𝑛0}and let 𝑝(𝑧) =  𝑎0 + 𝑎0𝑧 

+…+𝑎𝑁𝑧
𝑁be any polynomial such that 

‖𝑝(𝑊)‖ ≤ 1. We have for every 𝑘 ≥ 0 

𝑝(𝑊)ℯ𝑘  = 𝑎0ℯ𝑘 +

 ∑ (𝑎𝑛∏ 𝑤𝑘+𝑗
𝑛−1
𝑗=0 )ℯ𝑘+𝑛 ,

𝑁
𝑛=1  

So that  

|𝑎0|
2 + ∑ (|𝑎𝑛|

2|∏ 𝑤𝑘+𝑗
𝑛−1
𝑗=0 |

2
) =𝑁

𝑛=1

‖𝑝(𝑊)ℯ𝑘‖
2 ≤ 1 (*) 

 In particular, with 𝑘 =  0 we get  

‖∑𝑎𝑛𝑊
𝑛ℯ0

𝑛0

𝑛=0

‖

2

  =   |𝑎0|
2 ∑(|𝑎𝑛|

2 |∏𝑤𝑗

𝑛−1

𝑗=0

|

2

)  ≤

𝑛0−1

𝑛=1

 

|𝑎0|
2 +∑(|𝑎𝑛|

2 |∏𝑤𝑗

𝑛−1

𝑗=0

|

2

) = ‖𝑝(𝑊)ℯ𝑘‖
2 ≤ 1

𝑁

𝑛=1

. 

On the other hand, it follows from (*) that 

for every 𝑛 with 1 ≤ 𝑛 ≤ 𝑁we have  

|𝑎𝑛|
2|∏ 𝑤𝑘+𝑗

𝑛−1
𝑗=0 |

2
≤ 1, 

and taking the supremum over 𝑘 ≥  0 

yields|𝑎𝑛|
2‖ 𝑊𝑛‖2 ≤ 1. Thus,  

‖∑ 𝑎𝑛𝑊
𝑛ℯ0

𝑁
𝑛=𝑛0 ‖

2
 =  ∑ (|𝑎𝑛|

2|∏ 𝑤𝑗
𝑛−1
𝑗=0 |

2
)𝑁

𝑛=𝑛0   =  ∑ |𝑎𝑛|
2‖ 𝑊𝑛ℯ0‖

2𝑁
𝑛=𝑛0 =  

∑ |𝑎0|
2 ‖ 𝑊

𝑛ℯ0‖
2

‖ 𝑊𝑛‖2
∞
𝑛=𝑛0

‖ 𝑊𝑛‖2 ≤ ∑
‖ 𝑊𝑛ℯ0‖

2

‖ 𝑊𝑛‖2
∞
𝑛=𝑛0 < 𝜀2 
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Hence, (𝑊)ℯ0  ∈ 𝐾𝜀 +  𝜀𝐵𝐻, and since 𝜀 >
0 is arbitrarily small, it follows from Lemma 

1, that 𝑆 is a relatively compact subset of 𝐻. 

It will be shown in Corollary 4, below that 

the sufficient condition stated in Theorem 4, 

is not necessary for a weighted shift to be 

strongly compact. Anyway, in the next 

corollary we apply this sufficient condition 

to give an example of a compact weighted 

shift with non-zero weights which is 

strongly compact. 

Corollary 3. Let (𝜀ℎ) be a sequence of 

positive numbers such that 

𝜀ℎ ≤ 
1

2ℎ/2ℎℎ+1
 

for every ℎ ≥ 1, and define (𝑤𝑛)by  

𝑤𝑛 =

{
 

 
1 , 𝑖𝑓 𝑛 = 0 , 1  

𝜀ℎ , 𝑖𝑓 𝑛 = 2ℎ

1

ℎ
 ,   𝑖𝑓 2ℎ < 𝑛 < 2ℎ+1

 

Then the weighted shift 𝑊 induced by the 

sequence of weights (𝑤𝑛) is strongly 

compact. 

Proof. Put 

𝑎𝑛  = |
∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

|
𝑘≥0

𝑖nf

 , 

take an 𝑛 ≥ 2, and choose ℎ ≥  1 such that 

2ℎ ≤ 𝑛 < 2ℎ+1. Notice that between 2
ℎ
and 

2
ℎ+1

there are at least ℎintegers, so that 𝑎𝑛 ≤
 ℎℎ𝜀ℎ. Thus, 

∑𝑎𝑛
2   ≤ 1 + ∑ ∑ 𝑎𝑛

2   ≤ 1 +∑2ℎℎ2ℎ𝜀ℎ
2  ≤ 1 +∑

1

ℎ2
<  ∞ .

∞

ℎ=1

∞

ℎ=1

2ℎ+1−1

𝑛=2ℎ

∞

ℎ=1

∞

𝑛=1

 

and it follows from Proposition 4, that𝑊is 

strongly compact.  

Now look at the condition stated in 

Proposition 7, and assume that the sequence 

of weights has increasing moduli, that is, 
|𝑤𝑛| ≤ |𝑤𝑛+1|for all 𝑛 ≥1. Then there exists 

𝜆 =  lim|𝑤𝑛|and therefore  

lim
𝑛→∞

|
∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

|

𝑘≥0

𝑖nf

= lim
𝑛→∞

|∏ 𝒲𝑗
𝑛−1
𝑗=0 |

𝜆𝑛
 

It turns out that under the monotony 

assumption the necessary condition stated in  

Proposition 7, is also sufficient for a 

weighted shift to be strongly compact.  

Theorem 5. Let 𝑊 be the weighted shift 

induced by a bounded sequence (𝑤𝑛)𝑛≥0of 

non-zero weights with increasing moduli 

and assume that 

lim
𝑛→∞

|
∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

|
𝑘≥0

𝑖nf

= 0.  

Then W is strongly compact. 

Proof. Since 𝑒0is a cyclic vector for𝑊, 

thanks to the remarks after Lemma 2, it 

suffices to show that the set 

𝑆 = : 𝑝(𝑊) ℯ0is a polynomial, ‖𝑝(𝑊)‖ ≤
1 

is relatively compact in 𝐻 . Let 𝜆 = lim|𝑤𝑛|, 

fix 𝜀 >  0, and choose 𝑛0so large that if 𝑛 ≥
𝑛0 then  

|∏ 𝑤𝑗
𝑛−1
𝑗=0 | <  𝜀𝜆𝑛 .  

Let 𝐾𝜀denote the unit ball of 

span{ℯ0 , ℯ1, … , ℯ𝑛0}and let 𝑝(𝒵) = 𝑎0 + 𝑎0𝒵 

+…+𝑎𝑁𝒵
𝑁 be any polynomial such 

that‖𝑝(𝑊)‖ ≤ 1 . We have for every 𝑘 ≥0.  

𝑝(𝑊) ℯ0=   𝑎0ℯ𝑘 + ∑ (𝑎𝑛∏ 𝑤𝑘+𝑗
𝑛−1
𝑗=0 )ℯ𝑘+𝑛

𝑁
𝑛=1  , 

so that 

|𝑎0|
2 + ∑ (|𝑎𝑛|

2|∏ 𝑤𝑘+𝑗
𝑛−1
𝑗=0 |

2
) =𝑁

𝑛=1

‖𝑝(𝑊)ℯ𝑘‖
2 ≤ 1 (*) 

In particular, with k = 0 we get  

‖∑𝑎𝑛𝑊
𝑛ℯ0

𝑛0

𝑛=0

‖

2

  =  |𝑎0|
2 + ∑ (|𝑎𝑛|

2 |∏𝑤𝑗

𝑛−1

𝑗=0

|

2

)   ≤

𝑛0−1

𝑛=1

 

|𝑎0|
2 +∑(|𝑎𝑛|

2 |∏𝑤𝑗

𝑛−1

𝑗=0

|

2

) = ‖𝑝(𝑊)ℯ𝑘‖
2 ≤ 1

𝑁

𝑛=1

 

On the other hand, taking limits 𝑎𝑠𝑘 →  ∞in (*) gives  

|𝑎0|
2 +∑|𝑎𝑛|

2

𝑁

𝑛=1

𝜆2𝑛 ≤ 1 , 

So that  
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‖∑ 𝑎𝑛𝑊
𝑛ℯ0

𝑛0
𝑛=𝑛0

‖
2
  =  ∑ (|𝑎𝑛|

2|∏ 𝑤𝑗
𝑛−1
𝑗=0 |

2
)𝑁

𝑛=𝑛0 ≤ ℰ2∑ |𝑎𝑛|
2𝜆2𝑛 ≤𝑁

𝑛=𝑛0 ℰ2 

Hence, 𝑝(𝑊) ℯ0 ∈ 𝐾𝜀+ 𝜀𝐵𝐻, and since 𝜀 >  0 

is arbitrarily small, it follows from Lemma 

1, that 𝑆 is a relatively compact subset of 𝐻.  

Observe that when (|𝑤𝑛|) is an increasing 

sequence that converges to, the condition 

stated in Theorem 5, is just 

lim
𝑛→∞

∏
|𝒲𝑗|

𝜆 
= 0𝑛−1

𝑗=0  , 

and this happens if and only if  

∑(𝜆 − |𝑤𝑛|) = ∞

∞

𝑛=1

 

 As an application of Theorem 5, we come 

back to Corollary 1and take a look at the 

operator of multiplication by 𝒵on Bergman 

space from a different point of view. 

Corollary 4. The operator 𝑀𝒵of 

multiplication by 𝒵 on 𝐴2(𝔻)  is strongly 

compact. 

Proof. It is shown in Halmos’s book [4] that 

𝐴2(𝔻) is isometrically isomorphic to a 

weighted sequence space so that 𝑀𝒵is 

unitarily equivalent to the weighted shift 

𝑊whose weights are given by 

𝑤𝑛 = (
𝑛 + 1

𝑛 + 2
)

1
2⁄

 

A quick computation shows that this 

sequence of weights satisfies the condition 

of Theorem 5, Thus, 𝑀𝒵is strongly compact 

on 𝐴2(𝔻). 

Notice that this weighted shift does not 

satisfy the condition stated in Theorem 4, 

and therefore that condition is not necessary 

for a weighted shift to be strongly compact. 

We finish this section with an example to 

show that the necessary condition stated in 

Proposition 7, in general is not sufficient 

for a weighted shift to be strongly compact. 

Proposition 10.There exists a sequence of 

𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 weights (𝑤𝑛)𝑛≥0such that the 

corresponding weighted shift is not strongly 

compact but 

lim
𝑛→∞

|
∏ 𝒲𝑗
𝑛−1
𝑗=0

∏ 𝒲𝑘+𝑗
𝑛−1
𝑗=0

|
𝑘≥0

𝑖nf

 = 0.  

Proof. Let (𝑛𝑘)𝑘≥1 be an increasing 

sequence of positive integers satisfying 

( i ) 𝑛𝑘+1 > 4𝑛𝑘 . 

(ii)(𝑘 + 2)
𝑛𝑘

𝑛𝑘+1⁄ ≤ 2. 
For instance, the sequence 𝑛𝑘= (𝑘+3)! works. 

Let𝜌𝑘 = (𝑘 + 1)
1
𝑛⁄ 𝑘  .Then (𝜌𝑘)𝑘is a 

decreasing sequence in the interval, [1, 2] 

since 𝑛𝑘 ≤ (𝑘 + 1)
1
𝑘⁄ ≤ 2 and, thanks to (i),  

𝜌𝑘
𝑛𝑘 = 𝑘 + 1 ≥ (𝑘 + 2)

1
4⁄ > (𝑘 + 2)

𝑛𝑘
𝑛𝑘+1⁄

= 𝜌𝑘+1
𝑛𝑘  . 

Define the sequence (𝑤𝑛)𝑛≥0 of positive 

weights by 𝑤𝑛= 1 for n ≤ 𝑛1, and if  𝑛𝑘 <

 𝑛 ≤ 𝑛𝑘+1 for certain k then 

𝑤𝑛 =

{
 

 1/√𝑘 + 1 , 𝑖𝑓 𝑛 = 𝑛𝑘+1 − 2𝑛𝑘  𝑜𝑟 𝑛 =  𝑛𝑘+1
1 , 𝑖𝑓 𝑛𝑘 < 𝑛 < 𝑛𝑘+1 − 2𝑛𝑘 𝑜𝑟  𝑛𝑘+1 − 𝑛𝑘 < 𝑛 < 𝑛𝑘+1 ,

𝜌𝑘 , 𝑖𝑓 𝑛𝑘+1  − 2𝑛𝑘 < 𝑛 ≤   𝑛𝑘+1 − 𝑛𝑘  .

 

 Let W denote the corresponding weighted shift. We have 𝑊𝑛ℯ0= 𝜏𝑛ℯ𝑛, where 𝜏𝑛=∏ 𝒲𝑗
𝑛−1
𝑗=0 . It 

is easy to check that 𝜏𝑛 = 1for ≤ 𝑛1, and for every k ≥ 1 

𝜏𝑛 = {

1 , 𝑖𝑓 𝑛𝑘 < 𝑛 ≤ 𝑛𝑘+1 − 2𝑛𝑘 ,

𝜌𝑘
𝑛−(𝑛𝑘+1−2𝑛𝑘+1)/√𝑘 + 1 , 𝑖𝑓  𝑛𝑘+1 − 2𝑛𝑘 < 𝑛 ≤  𝑛𝑘+1 − 𝑛𝑘

√𝑘 + 1 , 𝑖𝑓 𝑛𝑘+1 − 𝑛𝑘 < 𝑛 ≤  𝑛𝑘+1.

 

Observe that for 𝑛 ≤  𝑛𝑘+1 we always have 

1/√𝑘 + 1  ≤  𝜏𝑛 ≤ √𝑘 + 1. In order to prove 

that ‖ 𝑊𝑛ℯ0‖/‖ 𝑊
𝑛‖ → 0 𝑎𝑠 𝑛 →  ∞ . we are 

going to distinguish two cases. First of all, if 

𝑛𝑘 < 𝑛 ≤  𝑛𝑘+1for some k ≥ 1then 
‖ 𝑊𝑛ℯ0‖= 𝜏𝑛= 1, and 

‖ 𝑊𝑛‖ ≥ ‖ 𝑊𝑛ℯ𝑛𝑘+2−2𝑛𝑘+1‖ = ∏ 𝑤𝑚

𝑛𝑘+1−2𝑛𝑘+𝑛

𝑚=𝑛𝑘+1−2𝑛𝑘+1+1

 

=
𝑡𝑛𝑘+1−2𝑛𝑘+𝑛+1
𝑡𝑛𝑘+1−2𝑛𝑘+1

≥
1

1/√𝑘+1
= √𝑘 + 1 , 

using that, thanks to (i), 𝑛𝑘+1 − 𝑛𝑘 <
𝑛𝑘+1 − 2𝑛𝑘+𝑛+1 < 2𝑛𝑘+1 < 𝑛𝑘+2 − 2𝑛𝑘+1. 
Therefore, in this case,‖ 𝑊𝑛ℯ0‖/‖ 𝑊

𝑛‖  ≤

1/√𝑘 + 1. Otherwise, if 𝑛𝑘+1 − 2𝑛𝑘 < 𝑛 ≤

𝑛𝑘+1then ‖ 𝑊𝑛ℯ0‖= 𝜏𝑛 ≤ √𝑘 + 1, and using 

(ii) we get  

‖ 𝑊𝑛‖ ≥ ‖ 𝑊𝑛ℯ𝑛𝑘+2−2𝑛𝑘+1‖ = ∏ 𝑤𝑚

𝑛𝑘+2−2𝑛𝑘+𝑛

𝑚=𝑛𝑘+2−2𝑛𝑘+1+1

= 𝜌𝑘+1
𝑛  

≥ 𝜌𝑘+1 
𝑛𝑘+1−2𝑛𝑘 = (𝑘 + 2)(𝑘 + 2)−2𝑛𝑘/𝑛𝑘+1 ≥

𝑘+2

4
 . 
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These estimates yield ‖ 𝑊𝑛ℯ0‖/‖ 𝑊
𝑛‖ →

0 𝑎𝑠 𝑛 →  ∞ . In order to check that W is not 

strongly compact we will consider the 

sequence of polynomials (𝑝𝑘)𝑘 

defined by 

𝑝𝑘(𝒵) =
1

6𝑘
∑ 𝒵𝑛𝑖2𝑘
𝑖=𝑘+1  . 

This sequence of polynomials satisfies the 

following property. 

Claim A. For every 𝑘 ≥1 we have 
‖𝑝𝑘(𝑤)‖ ≤ 1 . 

Before proving Claim Awe finish the proof 

of Proposition 10. This is now easy, since 

𝑝𝑘(𝑤)𝑒0 =
1

6𝑘
∑ √𝑖𝑒𝑛𝑖 → 0

2𝑘

𝑖=𝑘+1

𝑤𝑒𝑎𝑘𝑙𝑦 𝑎𝑠𝑘 → ∞ , 

and 

‖𝑝𝑘(𝑤)𝑒0‖
2 =

1

36𝑘2
∑ 𝑖 ≥

1

36

𝑘(𝑘 + 1)

𝑘2
≥
1

36

2𝑘

𝑖=𝑘+1

 , 

so that the set {𝑝(𝑤)𝑒0 ∶  ‖𝑝(𝑤)‖ ≤ 1}is not 

relatively compact and therefore 𝑊is not a 

strongly compact operator. 

Notice that for every 𝑖 ≥ 1and 𝑗 ≥ 0 there 

exists 𝑎𝑖𝑗 > 0such that 𝑊𝑛𝑖𝑒𝑗 = 𝑎𝑖𝑗𝑒𝑗+𝑛𝑖 .We 

will need the following estimates for𝑎𝑖𝑗 

Claim B. For every 𝑖 ≥ 1 and 𝑗 ≥ 0we have 

𝑎𝑖𝑗 ≤ {
𝑖 + 1,

√𝑖,   𝑖𝑓 𝑗 < 𝑛𝑖 − 𝑛𝑖−1
𝑖𝑓 𝑛𝑖 − 𝑛𝑖−1  ≤ 𝑗 < 𝑛𝑖+1 − 𝑛𝑖
2,   𝑖𝑓 𝑛𝑖+1 − 𝑛𝑖 ≤ 𝑗

 

 

Proof of Claim B. We know that𝑎𝑖𝑗= 

∏ 𝑤𝑘 = 𝜏𝑗+𝑛𝑖
𝑗+𝑛𝑖−1
𝑘=𝑗 /𝜏𝑗 . 𝑖𝑓 𝑗 = 0 then𝑎𝑖𝑗 =

𝜏𝑛𝑖= √𝑖, and if 0 < 𝑗 < 𝑛𝑖 − 𝑛𝑖−1 then 𝑛𝑖 <

𝑗 + 𝑛𝑖 < 2𝑛𝑖 < 𝑛𝑖+1 − 2𝑛𝑖, so that𝜏𝑗+𝑛𝑖 =

1𝜏𝑗  ≥ 1/√𝑖. This takes care of the first 

estimate. Now observe that  1/√𝑘 + 1 ≤

 𝜏𝑛  ≤  √𝑖 + 1 for every 𝑛 ≤ 𝑛𝑖+1, and  𝑎𝑖𝑗 =

𝜏𝑗+𝑛𝑖/𝜏𝑗 ≤ 𝑖 + 1 , since 𝑗, 𝑗+𝑛𝑖 ≤ 𝑛𝑖+1if  j<

𝑛𝑖+1 − 𝑛𝑖Thus, the second estimate follows. 

Inorder to get the third estimate, notice that 

for 𝑗 = 𝑛𝑖+1 − 𝑛𝑖we have    𝑎𝑖𝑗 = 𝜌𝑖  ≤ 2 and 

for j> 𝑛𝑖+1 − 𝑛𝑖, we have 𝑤𝑗 ≤ 𝜌𝑖+1and so 

 𝑎𝑖𝑗=≤ 𝜌𝑖+1 
𝑛𝑖 = (𝑖 + 2)

𝑛 𝑖
𝑛𝑖+1 ≤  2 , thanks to 

(ii), and the proof of Claim Bis finished.  

Proof of Claim A. Fix an 𝑖such that 𝑘 + 1 ≤
𝑖 ≤ 2𝑘and let us split 𝑊𝑛𝑖 as the sum of two 

operators 𝑊𝑛𝑖 = 𝑆𝑖+ 𝑇𝑖defined by 

𝑆𝑖ℯ𝑗     =   {
𝑊

𝑛𝑖𝑒𝑗 , 𝑖𝑓 𝑗 =  𝑛𝑖+1 − 𝑛𝑖
0 ,   𝑖𝑓 𝑗 ≥  𝑛𝑖+1 − 𝑛𝑖

 

and 

𝑇𝑖ℯ𝑗   =   {
0 ,   𝑖𝑓 𝑗 > 𝑛𝑖+1 − 𝑛𝑖

𝑊
𝑛𝑖𝑒𝑗 , 𝑖𝑓 𝑗 ≥ 𝑛𝑖+1 − 𝑛𝑖

 

The third estimate of Claim B. yields ‖𝑇𝑖‖ ≤

2for k + 1 ≤ 𝑖 ≤ 2𝑘 and so 

‖ 1

6𝑘
∑ 𝑇𝑖
2𝑘
𝑖=𝑘+1 ‖ ≤

1

6𝑘
∑ ‖𝑇𝑖‖ ≤

1

3
2𝑘
𝑖=𝑘+1  .  

Now let R = ∑ 𝑆𝑖
2𝑘
𝑖=𝑘+1 .Our aim is to show 

that ‖𝑅‖ ≤ 4𝑘because this will produce 

‖𝑝𝑘(𝑤)‖ ≤
1

6𝑘
‖𝑅‖ + ‖ 1

6𝑘
∑ 𝑇𝑖
2𝑘
𝑖=𝑘+1 ‖ ≤

2

3
+
1

3
 = 1 

. 

which is what we want. 

In order to estimate the norm of R we 

observe that if 𝑆𝑖ℯ𝑗 ≠ 0 then j< 𝑛𝑖+1 − 𝑛𝑖 and 

𝑛𝑖 ≤  𝑗 +𝑛𝑖 < 𝑛𝑖+1. This implies that if  𝑖 ≠

𝑖′then 𝑆𝑖ℯ𝑗and  𝑆𝑖ℯ𝑗′ are orthogonal vectors, 

no matter what 𝑗and 𝑗 ′are. On the other 

hand, if 𝑗 ≠ 𝑗 ′then 𝑆𝑖ℯ𝑗and  𝑆𝑖ℯ𝑗′are also 

orthogonal. Therefore 𝑅𝑒𝑗is orthogonal to 

𝑅𝑒𝑗′ whenever 𝑗 ≠ 𝑗 ′and we may conclude 

that 

‖𝑅‖  =  ‖𝑅𝑒𝑗‖𝑗≥0

sup
.  

Now define 𝐼𝑗= min{𝑖 ≥ 1: 𝑛𝑖+1 − 𝑛𝑖 > 𝑗}and 

notice that 

𝑅𝑒𝑗 = ∑ 𝑎𝑖𝑗𝑒𝑗+𝑛𝑖
𝑘+1≤𝑖≤2𝑘.𝑖≥𝐼𝑗

 

𝐼𝑓𝐼𝑗 > 2𝑘𝑡ℎ𝑒𝑛‖𝑅𝑒𝑗‖=  0   Assume   𝐼𝑗  ≤ 2𝑘. 

Using the estimates of B and observing that 

‖𝑅𝑒𝑗‖
2
  =   ∑ 𝑎𝑖𝑗

2 ≤ 𝑎  𝐼𝑗𝑗
2

𝑘+1≤𝑖≤2𝑘.𝑖≥𝐼𝑗
 

≤ (𝐼𝑗 + 1)
2
+ ∑ 𝑖 ≤ (2𝑘 + 1)2 + 2𝑘2 ≤ 16𝑘2 .

2𝑘

𝑖=𝑘+1

 

 Thus, ‖𝑅𝑒𝑗‖ ≤ 4𝑘  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑗 ≥ 0 , ‖𝑅‖ ≤

4𝑘 and Claim A follows. 

 

Corollary 5. Let 𝜀(1 + 𝜃) be a sequence of 

positive numbers such that  

𝜀(1 + 𝜃) ≤
1

2
(1+𝜃)

2⁄ (1 + 𝜃)(𝜃+2)
 

for 𝜃 > 0, and define (𝑊𝑛) by  

𝑤𝑛 =

{
 
 

 
 

1 , 𝑖𝑓 𝑛 = 0 , 1

𝜀(1 + 𝜃) , 𝑖𝑓 𝑛 = 2(1+𝜃)

1

ℎ
, 𝑖𝑓 2(1+𝜃) < 𝑛 < 2(𝜃+2)  .

 

Then the weighted shift Winduced by the 

sequence of weights (𝑊𝑛) is strongly 

compact. [7] 
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Proof . Put  

𝛼(𝜃+2) = |
∏ 𝒲𝑗
(1+𝜃)
𝑗=0

∏ 𝒲𝑘+𝑗
(𝜃+2)
𝑗=0

|

𝑘≥0

𝑖nf

 

take an 𝜃 > 0, and choose 𝜃 > 0 such that 

2(1+𝜃) < 𝑛 < 2(𝜃+2). Notice that between 

2
(1+𝜃)

 and 2
(𝜃+2)

 there are at least (1+ 𝜃) 
integers, so that𝛼(𝜃+2) ≤ (1 + 𝜃)

(1+𝜃)𝜀(1 +

𝜃). Thus,  

∑𝛼(𝜃+2)
2

∞

𝜃=1

≤ 1 +∑ ∑ 𝛼(𝜃+2)
2 ≤ 1 +∑2(𝜃+2)(1+𝜃)

2(1+𝜃)
𝜀(1+𝜃)
2

∞

𝜃=0

2(𝜃+2)−1

𝑛=2(1+𝜃)

∞

𝜃=0

≤ 

1 +∑
1

(1 + 𝜃)2

∞

𝜃=0

< ∞ 
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