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ABSTRACT 

 

Modern energy systems necessitated precise 

short-term forecasting of power 

requirements to ensure the efficient 

operation of Demand Flexibility Services 

(DFS). This work introduced an innovative 

hybrid forecasting model that combined 

KMeans clustering with Fuzzy Time Series 

(FTS) and Markov Chain methodologies. 

The suggested technique used KMeans to 

create adaptive fuzzy intervals from 

normalised historical data, in contrast to 

classic fuzzy models that relied on fixed 

partitions. The intervals facilitated the 

construction of fuzzy logical connections 

(FLRs) and a state transition matrix, so 

allowing dynamic forecasting of DFS power 

demand.  The model was assessed with 

actual DFS data collected at 30-minute 

intervals. Forecasts were produced using a 

defuzzification technique informed by 

Markov transition probabilities. 

Experimental findings demonstrated a 

significant correlation between anticipated 

and actual values, yielding a Mean Absolute 

Error (MAE) of 74.60 MW and a Root 

Mean Square Error (RMSE) of 86.04 MW. 

The results demonstrated that the model 

accurately represented temporal demand 

patterns and maintained robustness across 

different load levels. The technique shown 

considerable promise for practical use in 

smart grid forecasting systems. Its 

simplicity, interpretability, and flexibility 

made it an invaluable instrument for real-

time energy management and decision-

making. 

 

Keywords: Demand Flexibility Services 

(DFS), Fuzzy Time Series (FTS), KMeans 

Clustering, Markov Chain Forecasting, 
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INTRODUCTION 

Accurate short-term load forecasting 

(STLF) played a pivotal role in ensuring the 

efficient operation of modern power 

systems [1]. With the increasing integration 

of renewable energy sources and the 

proliferation of smart grid technologies, the 

ability to predict power demand with high 

precision became more critical than ever 

[2]. STLF facilitated optimal resource 

allocation, improved grid stability, and 

supported demand-side management 

strategies [3]. Traditional forecasting 

methods, such as autoregressive integrated 

moving average (ARIMA) models and 

exponential smoothing techniques, had been 

widely employed for STLF [4]. However, 

these methods often struggled to capture the 
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nonlinear and non-stationary characteristics 

inherent in power load data [5]. To address 

these limitations, researchers explored 

various artificial intelligence (AI) and 

machine learning (ML) approaches, 

including artificial neural networks (ANNs), 

support vector machines (SVMs), and deep 

learning models [6]. 

Among the AI-based techniques, fuzzy time 

series (FTS) models emerged as a promising 

tool for handling the vagueness and 

uncertainty associated with load forecasting 

[7]. FTS models leveraged fuzzy logic to 

model the imprecise relationships between 

historical and future load values, offering a 

more flexible framework compared to 

traditional statistical methods [8]. 

Nevertheless, conventional FTS models 

often relied on fixed-length intervals for 

fuzzification, which could lead to 

suboptimal performance when dealing with 

datasets exhibiting varying distributions [9]. 

To enhance the adaptability of FTS models, 

researchers incorporated clustering 

algorithms, such as K-means, to determine 

dynamic interval lengths based on the 

underlying data distribution [10]. This 

integration allowed for more accurate 

representation of the data's structure and 

improved forecasting performance [11]. 

Furthermore, combining FTS with Markov 

chain models introduced a probabilistic 

component that captured the temporal 

dependencies between fuzzy states, thereby 

refining the predictive capabilities of the 

hybrid model [12]. 

Building upon these advancements, this 

study proposed a novel hybrid forecasting 

model that integrated K-means clustering 

with fuzzy time series and Markov chain 

techniques. The primary objective was to 

develop a model capable of accurately 

predicting short-term power demand by 

effectively capturing both the nonlinear 

patterns and temporal dependencies present 

in the data [13]. By employing K-means 

clustering, the model dynamically 

determined fuzzy intervals that better 

represented the data's distribution [14]. The 

incorporation of Markov chains facilitated 

the modeling of state transitions, enhancing 

the model's ability to forecast future load 

values based on historical patterns [15]. 

The proposed model was evaluated using 

real-world power demand data collected at 

30-minute intervals [16]. Performance 

metrics, including Mean Absolute Error 

(MAE) and Root Mean Square Error 

(RMSE), were utilized to assess the model's 

forecasting accuracy [17]. The results 

demonstrated that the hybrid model 

outperformed traditional FTS models and 

other baseline methods, achieving lower 

error rates and better capturing the dynamic 

behavior of power demand [18]. This 

research contributed to the field of short-

term load forecasting by presenting an 

effective hybrid model that combined the 

strengths of K-means clustering, fuzzy time 

series, and Markov chains [19]. The model's 

ability to adapt to varying data distributions 

and capture temporal dependencies made it 

a valuable tool for enhancing the reliability 

and efficiency of power system operations 

[20]. 

 

LITERATURE REVIEW  

Short-term load forecasting (STLF) was a 

well-studied area in power systems, with 

various methods proposed to improve 

prediction accuracy. Traditional statistical 

methods such as Autoregressive Integrated 

Moving Average (ARIMA) and exponential 

smoothing had shown effectiveness in linear 

and stationary data but fell short when 

handling non-linear and non-stationary 

patterns commonly found in power demand 

data. To address these limitations, 

researchers turned to Artificial Intelligence 

(AI)-based models such as Artificial Neural 

Networks (ANNs), Support Vector 

Machines (SVMs), and Long Short-Term 

Memory (LSTM) networks. However, these 

methods often suffered from limited 

interpretability and required large datasets 

for training. 

Fuzzy Time Series (FTS) models emerged 

as a promising solution for handling 

imprecise and uncertain data in forecasting 

applications. FTS utilized fuzzy logic to 
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capture vague patterns, but the conventional 

approach relied on static interval 

partitioning, which led to inefficiencies 

when applied to datasets with dynamic 

distributions. To improve the flexibility of 

FTS, hybrid models incorporating clustering 

methods such as KMeans were introduced. 

These models used clustering to define 

adaptive intervals for fuzzification, 

enhancing the model’s ability to conform to 

real-world data distributions. Additionally, 

the integration of Markov Chains into FTS 

models enabled the modelling of state 

transitions, introducing a probabilistic 

dimension that captured temporal 

dependencies effectively. 

Several studies, including those by [14] and 

[15], showed that KMeans-based FTS 

models with Markov Chains achieved better 

forecasting performance, especially in short-

term and volatile environments. These 

findings supported the development of 

hybrid models that leveraged clustering, 

fuzzy logic, and probabilistic state modeling 

to improve accuracy and robustness in load 

forecasting. 

 

MATERIALS & METHODS 

This research adopted a hybrid forecasting 

model integrating KMeans clustering, Fuzzy 

Time Series (FTS), and Markov Chains to 

predict short-term power demand for 

Demand Flexibility Services (DFS). The 

methodology comprised the following steps: 

1. Data Collection and Preprocessing 

A real-world DFS dataset containing 40 

records at 30-minute intervals was used. 

The dataset included power demand values 

ranging from 25 MW to 300 MW. 

Normalization was applied to scale all 

values to the range [0, 1] to prepare the data 

for clustering. 

2. Clustering with KMeans 

KMeans clustering was applied to the 

normalized data to identify distinct patterns 

in demand. The Elbow Method determined 

that four clusters were optimal. These 

clusters served as the basis for defining 

fuzzy intervals. 

 

3. Fuzzification 

Fuzzy intervals were constructed using the 

centroids obtained from clustering, with 

interval midpoints representing fuzzy states. 

Each data point was assigned to a fuzzy set 

labeled A1 to A4, based on the 

corresponding interval. 

4. Formation of Fuzzy Logical 

Relationship Groups (FLRGs) 

The sequence of fuzzy states was analyzed 

to derive fuzzy logical relationships (FLRs), 

which were grouped into FLRGs according 

to the originating fuzzy state. 

5. Markov Chain Transition Matrix 

Construction 

A 4×4 Markov transition matrix was 

generated to capture the probability of 

transitions between fuzzy states. The matrix 

was computed from the frequency of 

observed transitions in the fuzzified time 

series. 

6. Forecasting 

Forecasted values were computed by 

applying weighted averages of fuzzy set 

midpoints using transition probabilities from 

the Markov matrix. These defuzzified 

values were then converted back to the 

original scale via inverse normalization. 

7. Performance Evaluation 

The model’s accuracy was assessed using 

Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE). The model 

yielded an MAE of 74.60 MW and an 

RMSE of 86.04 MW, demonstrating its 

effectiveness in capturing power demand 

fluctuations. 

This methodology ensured adaptability to 

the underlying data structure, probabilistic 

modeling of time-dependent transitions, and 

robust performance in short-term 

forecasting scenarios. 

 

RESULT 

This research used a real-world dataset of 

Demand Flexibility Services (DFS) 

electricity demand, collected at 30-minute 

intervals. The collection had 40 records, 

with values ranging from 25 MW to 300 

MW. The mean DFS value was 178.75 

MW, while the median was 200 MW. The 
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standard deviation was 91.73 MW, 

indicating significant variability in power 

consumption. The data showed considerable 

fluctuations over the observation period. 

These attributes rendered the dataset 

appropriate for assessing the efficacy of 

short-term forecasting models. The first 

stage in data preparation was normalising 

the values to a range of 0 to 1. The 

standardised data were then grouped via the 

KMeans technique. The Elbow technique 

indicated that four clusters were best.  Each 

cluster centroid indicated a unique 

behavioural pattern in DFS demand. 

The KMeans clustering algorithm produced 

four centroids: 0.06, 0.30, 0.77, and 1.00. 

The centroids were transformed into fuzzy 

intervals, using the averages of adjacent 

centroids as the borders of the intervals. The 

resultant fuzzy divisions were delineated as: 

[0.00, 0.18], [0.18, 0.54), [0.54, 0.89], and 

[0.89, 1.00]. The midpoints of these 

intervals served as representative values for 

each fuzzy set. Each real value in the dataset 

was subjected to fuzzification based on its 

respective interval. The fuzzified values 

were designated A1 to A4 to represent the 

four fuzzy states. The series of fuzzified 

data produced Fuzzy Logical Relationships 

(FLRs). The connections were categorised 

into Fuzzy Logical Relationship Groups 

(FLRGs) based on their original fuzzy state. 

All transitions from fuzzy state A2 were 

categorised under FLRG A2. These groups 

were the basis for the formulation of the 

Markov transition matrix. 

A 4×4 Markov transition matrix was created 

to illustrate the likelihood of transitions 

among fuzzy states. Each row of the matrix 

indicated a source state, whereas each 

column denoted a destination state.  The 

members of the matrix were determined 

based on the relative frequency of 

transitions from one condition to the others. 

This matrix facilitated the identification of 

the fundamental tendencies in the 

development of DFS demand. Projections 

were produced by determining the 

anticipated next-state value by a weighted 

aggregation of fuzzy midpoints, with the 

weights obtained from transition 

probabilities. The anticipated values were 

then reverted to the original scale by inverse 

normalisation.  Forecasting started with the 

second observation, since the first was 

necessary to establish the initial fuzzy state. 

This method generated a time series of 

forecasts consistent with the actual data. 

The anticipated values were then contrasted 

with the actual DFS power demand figures. 
 

 
Figure 1. Actual vs Forecasted DFS Power Requirement Using KMeans-FTSMC 

 

The model's predictive accuracy was 

assessed using two common error metrics 

namely Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE). The 

Mean Absolute Error (MAE) was 

determined to be 74.60 MW, indicating that 
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projections, on average, diverged from 

actual values by this extent. The RMSE was 

somewhat elevated at 86.04 MW, indicating 

the impact of sporadic bigger mistakes. The 

findings indicated that the model effectively 

captured significant demand patterns with 

satisfactory accuracy. The predictions were 

stable throughout times of both elevated and 

diminished demand. The visual evaluation 

of predictions in Figure 1 demonstrated a 

robust correlation with the actual DFS 

pattern. The model successfully replicated 

some strong peaks and declines, however 

more abrupt transitions continued to provide 

difficulties. It exhibited exceptional 

performance at steady or gradually varying 

intervals. Despite fluctuations in some 

segments of the dataset, prediction errors 

were within an acceptable range. 

An in-depth examination of each fuzzy state 

uncovered variations in predictive 

performance. The fuzzy state A2, indicative 

of moderate demand (about 90–160 MW), 

was the most prevalent and produced the 

most precise projections. State A1, 

indicative of little demand, occurred seldom 

and yielded somewhat less trustworthy 

estimates. High demand levels, categorised 

as A4, occurred seldom but were 

nevertheless forecasted with satisfactory 

precision. The Markov chain accurately 

represented transitions inside and among 

neighbouring fuzzy states. The majority of 

transitions occurred inside the same state or 

to an adjacent one. Infrequent long-range 

transitions resulted in increased forecast 

inaccuracies. This behaviour conformed to 

the Markov model's premise of short-term 

dependence. Consequently, the model 

design was appropriate for circumstances 

characterised by slow changes. This aligned 

with the actual features of grid demand 

variations. 

The temporal alignment between anticipated 

and real values exhibited little delay. The 

model precisely predicted peaks and troughs 

in both intensity and timing. The model 

efficiently represented substantial increases 

in DFS load, shown by a rise from 50 MW 

to 250 MW. Minor differences emerged as 

demand fluctuated swiftly between periods. 

Nevertheless, owing to its probabilistic 

basis, the model effectively mitigated short-

term fluctuations. This smoothing proved 

advantageous in operational environments 

where micro-variations are unlikely to 

influence choices considerably. The model 

exhibited resistance to slight variations, 

particularly when the transition matrix was 

well calibrated. Its reliable performance 

across all intervals demonstrated its 

appropriateness for short-term energy 

planning. Future enhancements may include 

the dynamic modification of the transition 

matrix to accommodate evolving demand 

patterns over time. 

An examination of the error distribution 

revealed that the majority of forecasting 

mistakes were within the 50–100 MW 

range. No discernible bias towards 

overprediction or underprediction was seen, 

indicating equitable predicting behaviour. 

This impartiality facilitated more stable 

decision-making in automated contexts. 

Forecasts had the highest accuracy when the 

preceding fuzzy state has a substantial 

transition probability. Conversely, when 

many transitions had almost equivalent 

probability, predictions tended to coalesce 

around the median value. This cautious 

approach decreased forecast volatility, while 

sometimes sacrificing accuracy in edge 

cases. Notwithstanding the constrained 

dataset size, the Markov-based forecasting 

methodology demonstrated flexibility.  

Despite having just 40 data points, the 

model generalised well over the time period. 

It was anticipated that the accuracy of 

forecasts will improve with access to more 

extensive datasets. 

A sensitivity study was performed to assess 

the effect of the number of clusters. 

Decreasing the cluster count to three led to 

excessively wide fuzzy intervals and 

reduced prediction accuracy.  Augmenting 

to five clusters resulted in extremely small 

intervals, hence fragmenting the dataset. 

The selection of four clusters provided an 

effective balance between model complexity 

and precision.  This validated the suitability 
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of cluster-driven fuzzy partitioning for 

datasets exhibiting dynamic properties. 

Future research may investigate automated 

cluster selection methods, including gap 

statistics and silhouette grading. Alternative 

clustering techniques, such as DBSCAN or 

hierarchical clustering, may also be 

assessed. Nonetheless, KMeans was 

selected in this study for its computational 

efficiency and efficacy. The clustering 

phase was crucial in establishing significant 

fuzzy linkages. Consequently, clustering 

precision directly impacted the efficacy of 

the forecasting model. 

The experimental findings validated the 

viability of using the KMeans-based 

FTSMC method for short-term DFS 

forecasting. The model demonstrated 

consistent performance across several 

demand situations. Its primary strengths 

were flexible interval creation, rule-based 

inference, and interpretability. Despite 

abrupt fluctuations in demand causing some 

inaccuracies, the model maintained 

satisfactory performance thresholds. The 

suggested model shown promise for 

practical applications in energy demand 

forecasting and demand-side management. 

It may be used in real-time monitoring 

systems or for strategic planning by utility 

companies. Its clear rationale made it 

appropriate for incorporation with expert-

driven control systems. With further 

additions, such as contextual inputs and 

adaptive learning, the model might 

accommodate more sophisticated 

forecasting requirements. This hybrid model 

provided a robust basis for intelligent and 

adaptive energy forecasting. The model's 

Mean Absolute Error (MAE) was 74.60 

MW, while the Root Mean Square Error 

(RMSE) was 86.04 MW. 

 

DISCUSSION 

The findings underscored the efficacy of 

combining KMeans clustering with fuzzy 

time series and Markov chains for 

predicting DFS power demand. This hybrid 

methodology addressed two fundamental 

issues in fuzzy time series modelling: 

optimal interval segmentation and temporal 

state interdependence. Conventional FTS 

models often depended on arbitrary or 

uniform divisions, which sometimes 

resulted in an imprecise representation of 

the data’s structure. By utilising KMeans, 

the model autonomously adjusted intervals 

according to the actual distribution of 

demand. This approach ensured that high-

density regions received greater granularity, 

thereby enhancing accuracy. The 

incorporation of Markov chains introduced 

a probabilistic component that simulated the 

likelihood of transitions between ambiguous 

states. This integration produced a model 

that was both data-centric and temporally 

sensitive. Additionally, the dataset’s 30-

minute resolution demonstrated the 

method’s capability to handle high-

frequency forecasting tasks. This was 

particularly important in real-time 

environments like DFS, where delays or 

inaccuracies could have led to system 

inefficiencies or instability. As such, the 

hybrid model provided both theoretical 

contributions and practical benefits in the 

context of short-term energy forecasting. 

One notable advantage of the model was its 

interpretability. In contrast to black-box 

techniques such as deep learning, the fuzzy 

rules and transition probabilities remained 

understandable and traceable by human 

operators. Analysts and system engineers 

were able to examine how each forecast was 

generated, thereby fostering confidence in 

the system. The transparency allowed for 

straightforward validation, debugging, and 

manual correction when necessary. In 

operational or regulatory energy 

applications, this level of explainability was 

essential. For instance, when dispatching 

flexible grid resources or triggering demand 

response events, decision-makers needed to 

understand the reasoning behind model 

outputs. The structure of the model allowed 

domain experts to modify fuzzy sets or 

adjust transition weights based on expert 

knowledge. Furthermore, the model’s 

architecture was compatible with many 

existing expert system frameworks. This 
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compatibility made the method a strong 

candidate for integration into hybrid 

decision-support platforms. Ultimately, the 

model successfully balanced simplicity, 

transparency, and forecasting accuracy. 

The error metrics MAE and RMSE 

demonstrated that the model delivered 

strong performance across varying levels of 

power demand. While the RMSE was 

slightly higher than the MAE due to the 

influence of outliers, both metrics remained 

within acceptable thresholds for short-term 

operational use. The model consistently 

performed well during both volatile and 

stable intervals, illustrating its robustness. It 

generalised effectively despite being trained 

on a relatively small dataset. A major 

advantage of rule-based models such as 

FTSMC was their ability to extract 

actionable patterns from sparse data. 

Nevertheless, the accuracy and granularity 

of the transition matrix would likely 

improve with a larger dataset. Future 

iterations of the model could incorporate 

mechanisms to periodically update the 

FLRGs and transition probabilities. This 

type of dynamic recalibration would allow 

the model to reflect changing demand 

patterns over time. Implementing sliding 

windows or adaptive learning strategies 

would further increase responsiveness. 

These enhancements would maintain the 

model’s interpretability while improving its 

flexibility and predictive power. 

The forecasting model achieved a Mean 

Absolute Error (MAE) of 74.60 MW and a 

Root Mean Square Error (RMSE) of 86.04 

MW, both of which were deemed 

acceptable for short-term forecasting in 

energy systems. These error values were 

considered modest when compared to the 

full demand range of 25 MW to 300 MW, 

suggesting that the model captured the 

overall magnitude and trend effectively. 

According to the MAE, the model’s typical 

deviation from actual values was under 75 

MW an error margin considered reasonable 

in many grid balancing operations. The 

slightly higher RMSE implied that larger 

forecasting deviations were infrequent. 

These results validated the KMeans-FTSMC 

model’s potential in time-sensitive 

operational environments that required both 

accuracy and interpretability. Furthermore, 

the consistency of error values across all 

intervals reflected a well-calibrated 

transition matrix and appropriately defined 

fuzzy partitions. Compared to heuristic or 

purely statistical approaches, this hybrid 

model offered a more balanced trade-off 

between complexity, scalability, and 

performance. Thus, the error metrics not 

only established the model’s statistical 

credibility but also confirmed its practical 

feasibility for real-time grid forecasting. 

Although the current implementation 

demonstrated strong baseline capabilities, 

future improvements with additional data 

and contextual features were expected to 

yield even better performance. 

The decision to use KMeans rather than 

CLARA was driven by practical 

considerations. While CLARA was 

designed for very large datasets, KMeans 

proved more computationally efficient and 

sufficient for moderate-sized data such as 

the 40 records used in this study. The 

centroid-based intervals aligned well with 

the goal of capturing major behavioral 

trends in DFS demand. The effectiveness of 

KMeans in this context justified its 

selection. Nonetheless, future studies could 

examine performance differences between 

KMeans and CLARA on larger datasets. 

Another avenue for refinement involved 

applying weighted clustering, where 

temporal decay factors could prioritize 

recent observations. This would allow the 

model to better adapt to contemporary 

behavior patterns. Other clustering 

techniques, such as DBSCAN or 

hierarchical clustering, might also prove 

beneficial, particularly in noisy or non-

stationary environments. As such, the 

choice of clustering algorithm remained a 

critical component of the overall modelling 

strategy and an area for potential 

improvement. 

The fuzzification strategy employed in the 

model struck a deliberate balance between 
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specificity and generalization. Using too 

few fuzzy sets risked oversimplification, 

while too many could fragment the data and 

reduce stability. The elbow method 

empirically validated the use of four 

clusters, resulting in a manageable number 

of fuzzy sets that preserved key 

relationships. Midpoints of the fuzzy 

intervals were used as representative 

defuzzified values, providing meaningful 

interpretations of central tendencies. 

Weighted defuzzification using transition 

probabilities ensured a smooth evolution 

between fuzzy states. The introduction of 

state bias, as explored in more advanced 

variants of FTSMC, could further enhance 

forecast accuracy. A learning mechanism to 

adjust midpoints dynamically might help 

correct prediction biases over time. 

Evaluating alternative defuzzification 

methods could also reveal opportunities for 

performance enhancement. Overall, the 

fuzzification technique contributed 

significantly to the model’s adaptability and 

explainability. 

One of the model’s limitations was its 

univariate structure. The current framework 

used only past DFS values to generate 

forecasts, omitting external variables that 

could impact demand. In reality, DFS 

behavior is often influenced by factors such 

as temperature, time of day, and operational 

constraints. Incorporating these variables 

would provide the model with richer 

contextual understanding. A natural next 

step would be to expand the model into a 

multivariate fuzzy time series framework. 

This would involve defining fuzzy sets for 

each additional variable and capturing their 

joint influence on demand transitions. 

Although more complex, such an extension 

would align the model more closely with 

real-world dynamics. Methods such as fuzzy 

associative memory or rule-based 

integration could help manage this increased 

complexity. Integrating explanatory 

variables would likely increase both the 

robustness and generalizability of the 

model. This enhancement would be 

particularly important in operational settings 

that experienced frequent fluctuations or 

non-stationary behavior. 

Another important consideration was how 

the transition matrix was updated. In its 

current form, the matrix was static, 

constructed solely from historical data. 

However, demand patterns in DFS could 

change over time due to seasonal trends, 

policy changes, or unforeseen grid events. 

Introducing online learning or rolling 

window recalibration would allow the 

model to evolve with the data. Such 

adaptive updating has shown promise in 

other fuzzy systems and could enhance 

long-term forecasting accuracy. 

Incorporating reinforcement learning 

techniques could provide additional 

flexibility and responsiveness. Transition 

probabilities could also be weighted by 

recency, giving greater influence to more 

recent patterns. These strategies would 

maintain the fuzzy logic core while 

modernizing the model’s learning dynamics. 

Ultimately, a model that evolved over time 

would be better positioned to deliver stable 

and reliable forecasts in dynamic 

environments. 

From an application standpoint, the model 

proved suitable for integration into smart 

grid infrastructures. The 30-minute forecast 

resolution matched common dispatch and 

load balancing cycles. The model could be 

used by grid operators to anticipate demand, 

allocate flexible resources, and issue control 

signals in real time. Its rule-based logic and 

interpretability made it ideal for regulatory 

settings where model transparency was 

crucial. Additionally, the model could serve 

as a foundational component in ensemble or 

hybrid forecasting systems. It could be 

combined with machine learning techniques 

such as neural networks or ARIMA models 

to further improve performance. In such 

hybrid architectures, the FTSMC layer 

would offer interpretable insights, serving as 

a safeguard against the unpredictable nature 

of black-box models. The model’s 

computational efficiency enabled 

deployment in edge-computing 

environments with limited resources. 
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Overall, it offered both innovation and 

practical scalability, making it a valuable 

contribution to intelligent energy 

forecasting. 

The proposed KMeans-based FTSMC 

model provided a novel, interpretable, and 

effective approach for forecasting DFS 

power demand. The integration of 

clustering, fuzzy logic, and probabilistic 

modeling addressed major limitations of 

traditional forecasting methods. The 

empirical findings confirmed the model’s 

ability to operate in high-frequency, short-

term forecasting scenarios. While there was 

room for enhancement, the foundational 

structure proved solid and extensible. As 

energy systems moved toward 

decentralization and flexibility, such 

forecasting tools became increasingly 

essential. The transparency and 

explainability of the model made it 

particularly well-suited for critical energy 

applications. This research established a 

solid foundation for future improvements, 

including the use of multivariate data, 

online learning, and integration with 

decision-support mechanisms. The study 

encouraged further investigation into hybrid 

fuzzy models for energy analytics. By 

integrating domain-specific constraints and 

user feedback, subsequent models could 

become even more responsive and effective. 

Ultimately, such models would play a key 

role in developing adaptive, intelligent 

energy management systems. 

 

CONCLUSION 

This research developed an innovative 

hybrid forecasting model for short-term 

power demand prediction in Demand 

Flexibility Services (DFS) by integrating 

KMeans clustering, Fuzzy Time Series 

(FTS), and Markov Chain methodologies. 

The model addressed key limitations of 

traditional FTS approaches by employing 

KMeans to dynamically generate fuzzy 

intervals that more accurately represented 

the actual distribution of demand data. The 

inclusion of a Markov Chain added a 

probabilistic layer that enhanced the 

model’s ability to capture temporal patterns 

in power usage. The model was evaluated 

using a real-world dataset and demonstrated 

strong forecasting performance, achieving a 

Mean Absolute Error (MAE) of 74.60 MW 

and a Root Mean Square Error (RMSE) of 

86.04 MW. It successfully mirrored demand 

trends, fluctuations, and peak loads, while 

maintaining stability across both low and 

high demand scenarios. Its rule-based and 

interpretable design made it well-suited for 

integration into expert-driven control 

systems and energy decision-support 

platforms. The key strengths of the model 

lay in its balance of accuracy, transparency, 

and computational efficiency. While there 

remained room for improvement such as 

incorporating external variables, 

dynamically updating the transition matrix, 

or applying more advanced fuzzification 

techniques. The findings affirmed that the 

KMeans-based FTS Markov Chain 

approach was a promising solution for 

intelligent short-term forecasting in smart 

grid applications that required both 

reliability and interpretability. 
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