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ABSTRACT 

 

This article introduces the ideas of fuzzy dots in BH-algebras and fuzzy dots ideals in BH-algebras and 

discusses some of the research's findings. 
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INTRODUCTION 

BCK-algebras and BCI-algebras are two types of abstract algebras that Y. Imai and K. Iseki 

presented [1, 2, and 3]. It is well known that the BCK-algebra class is a proper subclass of the 

BCI-algebra class  .The ideal theory of BCK-algebras is introduced by K. Iseki and S. Tanaka 

[7]. The concepts of fuzzy relations and fuzzy groups are introduced by P. Bhattacharya, and 

et al. [4]. Y. B. Jun, and et al. introduce the concept of BH-algebras [9]. Since then, BH-

algebras have been researched by other writers.     Particularly, the fuzzy theory in BH-algebras 

was studied by Q. Zhang, and et al. [10].   Fuzzy sets and fuzzy groups were introduced by L.A. 

Zadeh [6] and A. Rosenfeld [8, respectively].  Fuzzy BCK-algebras were first described by O.G. 

Xi [5]. Following that, Y.B. Jun and J. Meng [10] worked on Characterizing fuzzy subalgebras 

by their level subalgebras on BCK-algebras. D-algebras were introduced by J. Neggers and H. 

S. Kim [11] while fuzzy d-algebras were introduced by M. Akram [12].  

In this study, the concepts of Fuzzy dot Completely Closed BH-Ideal of BH-Algebra are 

classified. Then, we look into a number of fundamental aspects of fuzzy BH-ideals and fuzzy 

dot BH-ideals. 

 

PRELIMINARIES  

Definition 2-1: [10]  

A BH-algebra is a non-empty set 𝜒 with a constant 0 and a binary operation * satisfying the 

following conditions: 

(a) 𝑎 ∗ 𝑎 = 0, for all 𝑎 ∈ 𝜒. 

(b) 𝑎 ∗ 𝑏 = 0 and 𝑏 ∗ 𝑎 = 0 imply 𝑎 = 𝑏, for all 𝑎, 𝑏 ∈ 𝜒. 

(c) 𝑎 ∗ 0 = 𝑎, for all 𝑎 ∈ 𝜒.  

 

Definition 2-2 [12]: 

 Let 𝔸 = {(𝑎, 𝔸(𝑎)): 𝑎 ∈ 𝜒} and 𝔹 = {(𝑎, 𝔹(𝑎)): 𝑎 ∈ 𝜒} be two fuzzy subsets of 𝜒. The 

Cartesian product 𝔸 × 𝔹: 𝜒 × 𝜒 ⟶ [0,1] is defined by (𝔸 × 𝔹)(𝑎, 𝑏) = 𝔸(𝑎). 𝔹(𝑏) for all 𝑎, 

𝑏 ∈ 𝜒.  
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Definition 2-3 [9]: 

 A fuzzy subset 𝔸 of 𝜒 is said to be a fuzzy ideal of 𝜒 if satisfies the inequalities:  

(a) 𝔸(0) ≥ 𝔸(𝑎)                     
(b) 𝔸(𝑎) ≥ min⁡{𝔸(𝑎 ∗ 𝑏),𝔸(𝑏)} for all 𝑎, 𝑏 ∈ 𝜒.   

 

Definition 2-4 [9]: 

A fuzzy subset 𝔸 of 𝜒 is said to be a fuzzy BH-ideal of 𝜒 if satisfies the inequalities:  

(a) 𝔸(0) ≥ 𝔸(𝕩)                     
(b) 𝔸(𝑎) ≥ min⁡{𝔸(𝑎 ∗ 𝑏),𝔸(𝑏)} for all 𝑎, 𝑏 ∈ 𝜒.    

(c) 𝔸(𝑎 ∗ 𝑏) ≥ min⁡{𝔸(𝑎),𝔸(𝑏)} for all 𝑎, 𝑏 ∈ 𝜒.      

 

Definition 2-5 [12]:  

A fuzzy subset 𝔸 of 𝜒 is said to be a fuzzy dot subalgebra of 𝜒 if  𝔸(𝑎 ∗ 𝑏) ≥ 𝔸(𝑎).𝔸(𝑏) for 

all 𝑎, 𝑏 ∈ 𝜒.    

 

Definition 2-6: 

 Let 𝜒 be a BH-algebra and let 𝔸 be a fuzzy subset of 𝜒, then 𝔸 is said to be a fuzzy dot BH-

ideal if satisfies the following conditions: 

(a) 𝔸(𝕖) ≥ 𝔸(𝑎). 
(b) 𝔸(𝑎) ≥ 𝔸(𝑎 ∗ 𝑏). 𝔸(𝑏).  
 

Definition 2-7: 

 Let 𝜒 be a BH-algebra and let 𝔸 be a fuzzy subset of 𝜒, then 𝔸 is said to be fuzzy dot BH-sub-

algebra if 𝔸(𝑎 ∗ 𝑏) ≥ 𝔸(𝑎).𝔸(𝑏). 
 

Example 2-8:  

Consider the BH-algebra 𝕏 = {0,1,2,3} with the following operation table 

 
∗ 0 1 2 3 

0 0 1 2 3 

1 1 0 1 1 

2 2 2 0 2 

3 3 3 3 0 

 

Let the fuzzy set 𝔸 which is defined as: 

𝔸 = {
0.6 𝑎 = 0,1
0.4 𝑎 = 2,3

  

then 𝔸 is: 

a fuzzy dot BH-sub-algebra. 

a fuzzy dot BH-ideal. 

 

Definition 2-9:  

Let 𝜒 be a BH-algebra and 𝔸 be a fuzzy dot BH-ideal, then 𝔸 is said to be a fuzzy dot closed 

BH-ideal if 𝔸(0 ∗ 𝑎) ≥ 𝔸(𝑎). 
 

Example 2-10: 

The same example (1.8).  

 

Proposition 2-11:  

If 𝔸 is a fuzzy dot sub-algebra of 𝜒, then 𝔸(0) ≥ 𝔸(𝑎)𝕟 for all 𝑎 ∈ 𝜒. 
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Proof. For all 𝑎 ∈ 𝜒, we have 𝑎 ∗ 𝑎 = 0, hence 

                                  𝔸(0) = 𝔸(𝑎 ∗ 𝑎) = 𝔸((𝑎 ∗ 0)(𝑎 ∗ 0)) 
                                           = 𝔸(𝑎 ∗ (𝑎 ∗ 𝑎)) ∗ (𝑎 ∗ (𝑎 ∗ 𝑎)) 
                                           = 𝔸(𝑎 ∗ 0)𝔸(𝑎 ∗ 0)𝔸(𝑎 ∗ 0)………… 

𝕟-time 

                                          = 𝔸(𝑎)𝕟  

 

Proposition 2-12:  

If 𝔸 is a fuzzy dot sub-algebra of 𝜒, then 𝔸𝕞 (𝕞 is a positive integer number) is a fuzzy dot 

sub-algebra. 

 

Proof. For any 𝑎 ∈ 𝜒, 𝔸𝕞 is a fuzzy subset of 𝜒 defined by 𝔸𝕞(𝑎) = 𝔸(𝑎)𝕞 

Let 𝔸 is a fuzzy dot sub-algebra of 𝜒. 

𝔸(𝑎 ∗ 𝑏) ≥ 𝔸(𝑎). 𝔸(𝑏), ∀⁡𝑎, 𝑏 ∈ 𝜒. 

We have  

𝔸𝕞(𝑎 ∗ 𝑏) = 𝔸(𝑎 ∗ 𝑏)𝕞 ≥ (𝔸(𝑎).𝔸(𝑏))𝕞 ≥ 𝔸(𝑎)𝕞. 𝔸(𝑏)𝕞 ≥ 𝔸𝕞(𝑎). 𝔸𝕞(𝑏). 
 

Proposition 2-13: 

 Let 𝜒 be an associative BH-algebra, then every fuzzy ideal is a fuzzy dot closed BH-ideal.  

Proof. Let 𝔸 is a fuzzy ideal and for all 𝑎 ∈ 𝜒 

𝔸(0 ∗ 𝑎) = 𝔸(𝑎) ≥ 𝔸(𝑎)  (0 ∗ 𝑎 = 𝑎⁡⁡⁡∀⁡𝑎 ∈ 𝜒) 

Then 𝔸 is a fuzzy dot closed BH-ideal.  

 

MAIN RESULTS  

Definition 3-1:  

Let 𝜒 be a BH-algebra and 𝔸 be a fuzzy dot BH-ideal, then 𝔸 is said to be a fuzzy dot 

completely closed BH-ideal, if 𝔸(𝑎 ∗ 𝑏) ≥ 𝔸(𝑎). 𝔸(𝑏), ∀𝑎, 𝑏 ∈ 𝜒.  

 

Example 3-2:  

The same example (1.8).  

 

Proposition 3-3:  

If 𝔸 and 𝔹 are fuzzy dot completely closed BH-ideals of a BH-algebra 𝜒, then so is 𝔸⋀𝔹.  

 

Proof. Let 𝑎, 𝑏 ∈ 𝜒. Then  

𝔸⋀𝔹(𝑎 ∗ 𝑏) = min{𝔸(𝑎 ∗ 𝑏), 𝔹(𝑎 ∗ 𝑏)} 
                                                                     ≥ min⁡{𝔸(𝑎). 𝔸(𝑏),𝔹(𝑎).𝔹(𝑏)} 
                                                                    ≥ (min{𝔸(𝑎),𝔹(𝑎)}). (min⁡{𝔸(𝑏),𝔹(𝑏)}) 
                                                                    = ((𝔸⋀𝔹)(𝑎)). ((𝔸⋀𝔹)(𝑏)) 
Hence 𝔸⋀𝔹 is a fuzzy dot completely closed BH-ideal of a BH-algebra 𝜒.  

 

Proposition 3-4:  

If 𝑔: 𝜒 ⟶ 𝜉 is a homomorphism of BH-algebras. If 𝔹 is a fuzzy dot completely closed BH-

ideal of 𝜉, then the pre-image 𝑔−1(𝔹) of 𝔹 under 𝑔 is a fuzzy dot completely closed BH-ideal 

of 𝜒.  

 

Proof. Assume that 𝔹 is a fuzzy dot completely closed BH-ideal of 𝜉⁡and let 𝕩1, 𝕩2 ∈ 𝜒, we 

have,  

𝑔−1(𝔹)(𝕩1 ∗ 𝕩2) = 𝔹(𝑔(𝕩1 ∗ 𝕩2)) = 𝔹(𝑔(𝕩1). 𝑔(𝕩2)) 
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                                                                 ≥ 𝔹(𝑔(𝕩1)). 𝔹(𝑔(𝕩2)) = 𝑔−1(𝔹)(𝕩1). 𝑔
−1(𝔹)(𝕩2)  

Then 𝑔−1(𝔹) is a fuzzy dot completely closed BH-ideal of a BH-algebra.    

Proposition 3-5: 

If 𝑔: 𝜒 ⟶ 𝜉 is a homomorphism of a BH-algebra 𝜒 onto a BH-algebra 𝜉⁡. If 𝔸 is a fuzzy dot 

completely closed BH-ideal of 𝜒, then the image 𝑔(𝔸) of 𝔸 under 𝑔 is a fuzzy dot completely 

closed BH-ideal of 𝜉. 

 

Proof. Consider that 𝔸 is a fuzzy dot completely closed BH-ideal of 𝜒⁡and let 𝕪1, 𝕪2 ∈ 𝜉 and 

let 𝕦1 = 𝑔−1(𝕪1), 𝕦2 = 𝑔−1(𝕪2) and 𝕦12 = 𝑔−1(𝕪1 ∗ 𝕪2). Consider the set  

𝕦1 ∗ 𝕦2 = {𝕩 ∈ 𝜒: 𝕩 = 𝕒1 ∗ 𝕒2 for some 𝕒1 ∈ 𝕦1, 𝕒2 ∈ 𝕦2} 
If 𝕩 ∈ 𝕦1 ∗ 𝕦2, then 𝕩 = 𝕩1 ∗ 𝕩2 for some 𝕩1 ∈ 𝕦1and 𝕩2 ∈ 𝕦2, so that  

𝑔(𝕩) = 𝑔(𝕩1 ∗ 𝕩2) = 𝑔(𝕩1) ∗ 𝑔(𝕩2) = 𝕪1 ∗ 𝕪2 

that is, 𝕩 ∈ 𝑔−1(𝕪1 ∗ 𝕪2) = 𝕦12. Hence 𝕦1 ∗ 𝕦2 ⊆ 𝕦12. It follows that  

𝑔(𝔸)(𝕪1 ∗ 𝕪2) = sup⁡{𝔸(𝕩): 𝕩 ∈ 𝑔−1(𝕪1 ∗ 𝕪2)} 
= sup⁡{𝔸(𝕩): 𝕩 ∈ 𝕦12} 

     ≥ sup⁡{𝔸(𝕩): 𝕩 ∈ 𝕦1 ∗ 𝕦2} 
                      ≥ sup⁡{𝔸(𝕩1 ∗ 𝕩2): 𝕩1 ∈ 𝕦1, 𝕩2 ∈ 𝕦2} 
                         ≥ sup⁡{𝔸(𝕩1). 𝔸(𝕩2): 𝕩1 ∈ 𝕦1, 𝕩2 ∈ 𝕦2} 
Since . ∶ [0,1] × [0,1] ⟶ [0,1] is continuous, for every 𝜀 > 0 there exists 𝛿 > 0 such that if 

𝕩̃1 ≥ sup⁡{𝔸(𝕩1) − 𝛿: 𝕩1 ∈ 𝕦1} and 𝕩̃2 ≥ sup⁡{𝔸(𝕩2) − 𝛿: 𝕩2 ∈ 𝕦2}, then 𝕩̃1. 𝕩̃2 ≥
sup⁡{𝔸(𝕩1): 𝕩1 ∈ 𝕦1}. sup⁡{𝔸(𝕩2): 𝕩2 ∈ 𝕦2} − 𝜀. Choose 𝕒1 ∈ 𝕦1 and 𝕒2 ∈ 𝕦2 such that 

𝔸(𝕒1) ≥ sup⁡{𝔸(𝕩1) − 𝛿: 𝕩1 ∈ 𝕦1} and 𝔸(𝕒2) ≥ sup⁡{𝔸(𝕩2) − 𝛿: 𝕩2 ∈ 𝕦2}. Then 

𝔸(𝕒1). 𝔸(𝕒2) ≥ sup⁡{𝔸(𝕩1): 𝕩1 ∈ 𝕦1}. sup⁡{𝔸(𝕩2): 𝕩2 ∈ 𝕦2} − 𝜀 

Consequently,  

𝑔(𝔸)(𝕪1 ∗ 𝕪2) ≥ sup⁡{ 𝔸(𝕩1). 𝔸(𝕩2): 𝕩1 ∈ 𝕦1, 𝕩2 ∈ 𝕦2} 
                                                           ≥ sup{𝔸(𝕩1): 𝕩1 ∈ 𝕦1} . sup{𝔸(𝕩2): 𝕩2 ∈ 𝕦2} 
                                                          = 𝑔(𝔸)(𝕪1). 𝑔(𝔸)(𝕪2) 
Then, 𝑔(𝔸) is a fuzzy dot completely closed BH-ideal of 𝜉.  

 

Proposition 3-6: 

Let 𝔸 and 𝔹 be two fuzzy dot completely closed BH-ideals of BH-algebra 𝜒. The 𝔸 × 𝔹 is a 

fuzzy dot completely closed BH-ideal of 𝜒 × 𝜒. 

 

Proof. Let (𝕩1, 𝕪1) and (𝕩2, 𝕪2) ∈ 𝜒 × 𝜒. Then 

(𝔸 × 𝔹)((𝕩1, 𝕪1) ∗ (𝕩2, 𝕪2)) = (𝔸 × 𝔹)(𝕩1 ∗ 𝕩2, 𝕪1 ∗ 𝕪2) = 𝔸(𝕩1 ∗ 𝕩2).𝔹(𝕪1 ∗ 𝕪2)  
                                               ≥ (𝔸(𝕩1). 𝔸(𝕩2)). (𝔹(𝕪1).𝔹(𝕪2)) 
                                              = (𝔸(𝕩1).𝔹(𝕪1)). (𝔸(𝕩2).𝔹(𝕪2)) 
                                              = 𝔸 ×𝔹(𝕩1, 𝕪1). 𝔸 × 𝔹(𝕩2, 𝕪2) 
Hence, 𝔸 × 𝔹 is a fuzzy dot completely closed BH-ideal of 𝜒 × 𝜒. 

 

Declaration by Authors 

Acknowledgement: None 

Source of Funding: None 

Conflict of Interest: The authors declare no conflict of interest 

 
REFERENCES 
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